3 resultados para extended QT solution

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1859, in On the Origin of Species, Darwin broached what he regarded to be the most vexing problem facing his theory of evolution—the lack of a rich fossil record predating the rise of shelly invertebrates that marks the beginning of the Cambrian Period of geologic time (≈550 million years ago), an “inexplicable” absence that could be “truly urged as a valid argument” against his all embracing synthesis. For more than 100 years, the “missing Precambrian history of life” stood out as one of the greatest unsolved mysteries in natural science. But in recent decades, understanding of life's history has changed markedly as the documented fossil record has been extended seven-fold to some 3,500 million years ago, an age more than three-quarters that of the planet itself. This long-sought solution to Darwin's dilemma was set in motion by a small vanguard of workers who blazed the trail in the 1950s and 1960s, just as their course was charted by a few pioneering pathfinders of the previous century, a history of bold pronouncements, dashed dreams, search, and final discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the structure of the cell adhesion molecule L1 by electron microscopy. We were particularly interested in the conformation of the four N-terminal immunoglobulin domains, because x-ray diffraction showed that these domains are bent into a horseshoe shape in the related molecules hemolin and axonin-1. Surprisingly, rotary-shadowed specimens showed the molecules to be elongated, with no indication of the horseshoe shape. However, sedimentation data suggested that these domains of L1 were folded into a compact shape in solution; therefore, this prompted us to look at the molecules by an alternative technique, negative stain. The negative stain images showed a compact shape consistent with the expected horseshoe conformation. We speculate that in rotary shadowing the contact with the mica caused a distortion of the protein, weakening the bonds forming the horseshoe and permitting the molecule to extend. We have thus confirmed that the L1 molecule is primarily in the horseshoe conformation in solution, and we have visualized for the first time its opening into an extended conformation. Our study resolves conflicting interpretations from previous electron microscopy studies of L1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A principal feature of the crystal structures of tRNAs is an L-shaped tertiary conformation in which the aminoacyl acceptor stem and the anticodon stem are approximately perpendicular. However, the anticodon-acceptor interstem angle has not been precisely quantified in solution for any tRNA. Such a determination would represent an important test of the predicted global conformation of tRNAs in solution. To this end, we have constructed a yeast tRNA(Phe) heteroduplex RNA molecule in which the anticodon and acceptor stems of the tRNA have each been extended by approximately 70 base pairs. A comparison of the rotational decay times of the heteroduplex molecule and a linear control yields an interstem angle of 89 +/- 4 degrees in 4 mM magnesium chloride/100 microM spermine hydrochloride, essentially identical to the corresponding angle observed in the crystal under similar buffer and temperature conditions. The current approach is applicable to the study of a wide variety of RNA molecules that possess elements of nonhelical structure.