3 resultados para exploration
em National Center for Biotechnology Information - NCBI
Resumo:
These are intriguing times in the exploration of other solar-system bodies. Continuing discoveries about life on Earth and the return of data suggesting the presence of liquid water environments on or under the surfaces of other planets and moons have combined to suggest the significant possibility that extraterrestrial life may exist in this solar system. Similarly, not since the Viking missions of the mid-1970s has there been as great an appreciation for the potential for Earth life to contaminate other worlds. Current plans for the exploration of the solar system include constraints intended to prevent biological contamination from being spread by solar-system exploration missions.
Resumo:
This paper examines the available United States data on academic research and development (R&D) expenditures and the number of papers published and the number of citations to these papers as possible measures of “output” of this enterprise. We look at these numbers for science and engineering as a whole, for five selected major fields, and at the individual university field level. The published data in Science and Engineering Indicators imply sharply diminishing returns to academic R&D using published papers as an “output” measure. These data are quite problematic. Using a newer set of data on papers and citations, based on an “expanding” set of journals and the newly released Bureau of Economic Analysis R&D deflators, changes the picture drastically, eliminating the appearance of diminishing returns but raising the question of why the input prices of academic R&D are rising so much faster than either the gross domestic product deflator or the implicit R&D deflator in industry. A production function analysis of such data at the individual field level follows. It indicates significant diminishing returns to “own” R&D, with the R&D coefficients hovering around 0.5 for estimates with paper numbers as the dependent variable and around 0.6 if total citations are used as the dependent variable. When we substitute scientists and engineers in place of R&D as the right-hand side variables, the coefficient on papers rises from 0.5 to 0.8, and the coefficient on citations rises from 0.6 to 0.9, indicating systematic measurement problems with R&D as the sole input into the production of scientific output. But allowing for individual university field effects drives these numbers down significantly below unity. Because in the aggregate both paper numbers and citations are growing as fast or faster than R&D, this finding can be interpreted as leaving a major, yet unmeasured, role for the contribution of spillovers from other fields, other universities, and other countries.
Resumo:
Illite is a general term for the dioctahedral mica-like clay mineral common in sedimentary rocks, especially shales. Illite is of interest to the petroleum industry because it can provide a K-Ar isotope date that constrains the timing of basin heating events. It is critical to establish that hydrocarbon formation and migration occurred after the formation of the trap (anticline, etc.) that is to hold the oil. Illite also may precipitate in the pores of sandstone reservoirs, impeding fluid flow. Illite in shales is a mixture of detrital mica and its weathering products with diagenetic illite formed by reaction with pore fluids during burial. K-Ar ages are apparent ages of mixtures of detrital and diagenetic end members, and what we need are the ages of the end members themselves. This paper describes a methodology, based on mineralogy and crystallography, for interpreting the K-Ar ages from illites in sedimentary rocks and for estimating the ages of the end members.