57 resultados para estradiol
em National Center for Biotechnology Information - NCBI
Resumo:
The tumor necrosis factor-α (TNF-α) promoter was used to explore the molecular mechanisms of estradiol (E2)-dependent repression of gene transcription. E2 inhibited basal activity and abolished TNF-α activation of the TNF-α promoter. The E2-inhibitory element was mapped to the −125 to −82 region of the TNF-α promoter, known as the TNF-responsive element (TNF-RE). An AP-1-like site in the TNF-RE is essential for repression activity. Estrogen receptor (ER) β is more potent than ERα at repressing the −1044 TNF-α promoter and the TNF-RE upstream of the herpes simplex virus thymidine kinase promoter, but weaker at activating transcription through an estrogen response element. The activation function-2 (AF-2) surface in the ligand-binding domain is required for repression, because anti-estrogens and AF-2 mutations impair repression. The requirement of the AF-2 surface for repression is probably due to its capacity to recruit p160 coactivators or related coregulators, because overexpressing the coactivator glucocorticoid receptor interacting protein-1 enhances repression, whereas a glucocorticoid receptor interacting protein-1 mutant unable to interact with the AF-2 surface is ineffective. Furthermore, receptor interacting protein 140 prevents repression by ERβ, probably by interacting with the AF-2 surface and blocking the binding of endogenous coactivators. These studies demonstrate that E2-mediated repression requires the AF-2 surface and the participation of coactivators or other coregulatory proteins.
Estrogen receptor α, not β, is a critical link in estradiol-mediated protection against brain injury
Resumo:
Estradiol protects against brain injury, neurodegeneration, and cognitive decline. Our previous work demonstrates that physiological levels of estradiol protect against stroke injury and that this protection may be mediated through receptor-dependent alterations of gene expression. In this report, we tested the hypothesis that estrogen receptors play a pivotal role in mediating neuroprotective actions of estradiol and dissected the potential biological roles of each estrogen receptor (ER) subtype, ERα and ERβ, in the injured brain. To investigate and delineate these mechanisms, we used ERα-knockout (ERαKO) and ERβ-knockout (ERβKO) mice in an animal model of stroke. We performed our studies by using a controlled endocrine paradigm, because endogenous levels of estradiol differ dramatically among ERαKO, ERβKO, and wild-type mice. We ovariectomized ERαKO, ERβKO, and the respective wild-type mice and implanted them with capsules filled with oil (vehicle) or a dose of 17β-estradiol that produces physiological hormone levels in serum. One week later, mice underwent ischemia. Our results demonstrate that deletion of ERα completely abolishes the protective actions of estradiol in all regions of the brain; whereas the ability of estradiol to protect against brain injury is totally preserved in the absence of ERβ. Thus, our results clearly establish that the ERα subtype is a critical mechanistic link in mediating the protective effects of physiological levels of estradiol in brain injury. Our discovery that ERα mediates protection of the brain carries far-reaching implications for the selective targeting of ERs in the treatment and prevention of neural dysfunction associated with normal aging or brain injury.
Resumo:
The effects of testosterone on early atherogenesis and the role of aromatase, an enzyme that converts testosterone to estrogens, were assessed in low density lipoprotein receptor-deficient male mice fed a Western diet. Castration of male mice increased the extent of fatty streak lesion formation in the aortic origin compared with testes-intact animals. Administration of anastrazole, a selective aromatase inhibitor, to testes-intact males increased lesion formation to the same extent as that observed with orchidectomized animals. Testosterone supplementation of orchidectomized animals reduced lesion formation when compared with orchidectomized animals receiving the placebo. This attenuating effect of testosterone was not observed when the animals were treated simultaneously with the aromatase inhibitor. The beneficial effects of testosterone on early atherogenesis were not explained by changes in lipid levels. Estradiol administration to orchidectomized males attenuated lesion formation to the same extent as testosterone administration. Aromatase was expressed in the aorta of these animals as assessed by reverse transcription–PCR and immunohistochemistry. These results indicate that testosterone attenuates early atherogenesis most likely by being converted to estrogens by the enzyme aromatase expressed in the vessel wall.
Resumo:
The signaling pathways associated with estrogen-induced proliferation of epithelial cells in the reproductive tract have not been defined. To identify receptor tyrosine kinases that are activated in vivo by 17 beta-estradiol (E2), uteri from ovariectomized mice were examined for enhanced tyrosine phosphorylation of various receptors and a receptor substrate following treatment with this hormone. Within 4 hr after hormone exposure, extracts showed increased phosphotyrosine (P-Tyr) immunoreactivity at several bands, including 170- and 180-kDa; these bands were still apparent at 24 hr after E2. Analysis of immunoprecipitates from uterine extracts revealed that E2 enhanced tyrosine phosphorylation of the insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor substrate-1 (IRS-1) by 6 hr. Comparison of supernatants from IRS-1 and control rabbit IgG immunoprecipitates indicated that the 170-kDa P-Tyr band in extracts was equivalent to IRS-1. The receptors for epidermal growth factor, platelet-derived growth factor, and basic fibroblast growth factor did not exhibit an E2-induced increase in P-Tyr content. The nonestrogenic steroid hormones examined did not stimulate the P-Tyr content of IGF-1R or IRS-1. Immunolocalization of P-Tyr and IRS-1 revealed strong reactivity in the epithelial layer of the uterus from E2-treated mice, suggesting that the majority of P-Tyr bands observed in immunoblots originate in the epithelium. Since hormonal activation of IRS-1 is epithelial, estrogen-specific, and initiated before maximal DNA synthesis occurs following treatment with hormone, this protein, as part of the IGF-1R pathway, may be important in mediating estrogen-stimulated proliferation in the uterus.
Resumo:
The 4-hydroxy metabolite of 17 beta-estradiol (E2) has been implicated in the carcinogenicity of this hormone. Previous studies showed that aryl hydrocarbon-receptor agonists induced a cytochrome P450 that catalyzed the 4-hydroxylation of E2. This activity was associated with human P450 1B1. To determine the relationship of the human P450 1B1 gene product and E2 4-hydroxylation, the protein was expressed in Saccharomyces cerevisiae. Microsomes from the transformed yeast catalyzed the 4- and 2-hydroxylation of E2 with Km values of 0.71 and 0.78 microM and turnover numbers of 1.39 and 0.27 nmol product min-1.nmol P450-1, respectively. Treatment of MCF-7 human breast cancer cells with the aryl hydrocarbon-receptor ligand indolo[3,2-b]carbazole resulted in a concentration-dependent increase in P450 1B1 and P450 1A1 mRNA levels, and caused increased rates of 2-, 4-, 6 alpha-, and 15 alpha-hydroxylation of E2. At an E2 concentration of 10 nM, the increased rates of 2- and 4-hydroxylation were approximately equal, emphasizing the significance of the low Km P450 1B1-component of E2 metabolism. These studies demonstrate that human P450 1B1 is a catalytically efficient E2 4-hydroxylase that is likely to participate in endocrine regulation and the toxicity of estrogens.
Resumo:
Estradiol is converted to catechol estrogens via 2- and 4-hydroxylation by cytochrome P450 enzymes. 4-Hydroxyestradiol elicits biological activities distinct from estradiol, most notably an oxidant stress response induced by free radicals generated by metabolic redox cycling reactions. In this study, we have examined 2- and 4-hydroxylation of estradiol by microsomes of human uterine myometrium and of associated myomata. In all eight cases studied, estradiol 4-hydroxylation by myoma has been substantially elevated relative to surrounding myometrial tissue (minimum, 2-fold; mean, 5-fold). Estradiol 2-hydroxylation in myomata occurs at much lower rates than 4-hydroxylation (ratio of 4-hydroxyestradiol/2-hydroxyestradiol, 7.9 +/- 1.4) and does not significantly differ from rates in surrounding myometrial tissue. Rates of myometrial 2-hydroxylation of estradiol were also not significantly different from values in patients without myomata. We have used various inhibitors to establish that 4-hydroxylation is catalyzed by a completely different cytochrome P450 than 2-hydroxylation. In myoma, alpha-naphthoflavone and a set of ethynyl polycyclic hydrocarbon inhibitors (5 microM) each inhibited 4-hydroxylation more efficiently (up to 90%) than 2-hydroxylation (up to 40%), indicating > 10-fold differences in Ki (<0.5 microM vs. > 5 microM). These activities were clearly distinguished from the selective 2-hydroxylation of estradiol in placenta by aromatase reported previously (low Km, inhibition by Fadrozole hydrochloride or ICI D1033). 4-Hydroxylation was also selectively inhibited relative to 2-hydroxylation by antibodies raised against cytochrome P450 IB1 (rat) (53 vs. 17%). These data indicate that specific 4-hydroxylation of estradiol in human uterine tissues is catalyzed by a form(s) of cytochrome P450 related to P450 IB1, which contribute(s) little to 2-hydroxylation. This enzyme(s) is therefore a marker for uterine myomata and may play a role in the etiology of the tumor.
Resumo:
In mammals, gonadal function is controlled by a hypothalamic signal generator that directs the pulsatile release of gonadotropin-releasing hormone (GnRH) and the consequent pulsatile secretion of luteinizing hormone. In female rhesus monkeys, the electrophysiological correlates of GnRH pulse generator activity are abrupt, rhythmic increases in hypothalamic multiunit activity (MUA volleys), which represent the simultaneous increase in firing rate of individual neurons. MUA volleys are arrested by estradiol, either spontaneously at midcycle or after the administration of the steroid. Multiunit recordings, however, provide only a measure of total neuronal activity, leaving the behavior of the individual cells obscure. This study was conducted to determine the mode of action of estradiol at the level of single neurons associated with the GnRH pulse generator. Twenty-three such single units were identified by cluster analysis of multiunit recordings obtained from a total of six electrodes implanted in the mediobasal hypothalamus of three ovariectomized rhesus monkeys, and their activity was monitored before and after estradiol administration. The bursting of all 23 units was arrested within 4 h of estradiol administration although their baseline activity was maintained. The bursts of most units reappeared at the same time as the MUA volleys, the recovery of some was delayed, and one remained inhibited for the duration of the study (43 days). The results indicate that estradiol does not desynchronize the bursting of single units associated with the GnRH pulse generator but that it inhibits this phenomenon. The site and mechanism of action of estradiol in this regard remain to be determined.
Resumo:
We have previously shown that estradiol treatment of roosters resulted in a rapid loss of binding activity of the repressor MDBP-2-H1 (a member of the histone H1 family) to methylated DNA that was not due to a decrease in MDBP-2-H1 concentration. Here we demonstrate that MDBP-2-H1 from rooster liver nuclear extracts is a phosphoprotein. Phosphoamino acid analysis reveals that the phosphorylation occurs exclusively on serine residues. Two-dimensional gel electrophoresis and tryptic phosphopeptide analysis show that MDBP-2-H1 is phosphorylated at several sites. Treatment of roosters with estradiol triggers a dephosphorylation of at least two sites in the protein. Phosphatase treatment of purified rooster MDBP-2-H1 combined with gel mobility shift assay indicates that phosphorylation of MDBP-2-H1 is essential for the binding to methylated DNA and that the dephosphorylation can occur on the protein bound to methylated DNA causing its release from DNA. Thus, these results suggest that in vivo modification of the phosphorylation status of MDBP-2-H1 caused by estradiol treatment may be a key step for the down regulation of its binding to methylated DNA.
Resumo:
Estrogen receptor (ER) modulators produce distinct tissue-specific biological effects, but within the confines of the established models of ER action it is difficult to understand why. Previous studies have suggested that there might be a relationship between ER structure and activity. Different ER modulators may induce conformational changes in the receptor that result in a specific biological activity. To investigate the possibility of modulator-specific conformational changes, we have applied affinity selection of peptides to identify binding surfaces that are exposed on the apo-ERs α and β and on each receptor complexed with estradiol or 4-OH tamoxifen. These peptides are sensitive probes of receptor conformation. We show here that ER ligands, known to produce distinct biological effects, induce distinct conformational changes in the receptors, providing a strong correlation between ER conformation and biological activity. Furthermore, the ability of some of the peptides to discriminate between different ER α and ER β ligand complexes suggests that the biological effects of ER agonists and antagonists acting through these receptors are likely to be different.
Resumo:
The formation of estrogens from C19 steroids is catalyzed by aromatase cytochrome P450 (P450arom), the product of the cyp19 gene. The actions of estrogen include dimorphic anatomical, functional, and behavioral effects on the development of both males and females, considerations that prompted us to examine the consequences of deficiency of aromatase activity in mice. Mice lacking a functional aromatase enzyme (ArKO) were generated by targeted disruption of the cyp19 gene. Male and female ArKO mice were born with the expected Mendelian frequency from F1 parents and grew to adulthood. Female ArKO mice at 9 weeks of age displayed underdeveloped external genitalia and uteri. Ovaries contained numerous follicles with abundant granulosa cells and evidence of antrum formation that appeared arrested before ovulation. No corpora lutea were present. Additionally the stroma were hyperplastic with structures that appeared to be atretic follicles. Development of the mammary glands approximated that of a prepubertal female. Examination of male ArKO mice of the same age revealed essentially normal internal anatomy but with enlargement of the male accessory sex glands because of increased content of secreted material. The testes appeared normal. Male ArKO mice are capable of breeding and produce litters of approximately average size. Whereas serum estradiol levels were at the limit of detection, testosterone levels were elevated, as were the levels of follicle-stimulating hormone and luteinizing hormone. The phenotype of these animals differs markedly from that of the previously reported ERKO mice, in which the estrogen receptor α is deleted by targeted disruption.
Resumo:
In the present study, high levels of peptidylglycine α-amidating monooxygenase (PAM), which catalyzes the two-step formation of bioactive α-amidated peptides from their glycine-extended precursors, have been found in the uterus. Expression of PAM was evaluated in the uterus of intact cycling adult female rats and after experimental manipulation of the estrogen status of the rats. During the estrous cycle, PAM mRNA levels exhibited striking changes inversely related to the physiological variations of plasma estrogen levels. The levels of PAM transcripts changed markedly during the estrous cycle, reaching the highest levels at metestrus. There was a 15-fold increase in the abundance of PAM mRNA between metestrus and proestrus. Chronic treatment of ovariectomized rats with 17β-estradiol decreased PAM mRNA levels to values comparable with those found in intact rats at proestrus. Progesterone was without effect on PAM mRNA levels, indicating that the effect was specific for estradiol. In situ hybridization studies were conducted to determine the tissue disposition and cell types expressing PAM. High levels of PAM mRNA were localized in the endometrium at the level of luminal and glandular cells. A weak signal was observed in stromal cells, and the myometrium cells were negative. 17β-Estradiol treatment induced an overall decrease of the hybridization signal, as compared with ovariectomized rats. These results demonstrate the presence of high levels of PAM in the uterus and indicate that estrogens are involved in regulating the expression of the enzyme in this tissue. However, the present study provides no information regarding whether this regulation takes place at the level of transcription or influences mRNA stability.
Resumo:
The neuropeptide galanin is predominantly expressed by the lactotrophs (the prolactin secreting cell type) in the rodent anterior pituitary and in the median eminence and paraventricular nucleus of the hypothalamus. Prolactin and galanin colocalize in the same secretory granule, the expression of both proteins is extremely sensitive to the estrogen status of the animal. The administration of estradiol-17β induces pituitary hyperplasia followed by adenoma formation and causes a 3,000-fold increase in the galanin mRNA content of the lactotroph. To further study the role of galanin in prolactin release and lactotroph growth we now report the generation of mice carrying a loss-of-function mutation of the endogenous galanin gene. There is no evidence of embryonic lethality and the mutant mice grow normally. The specific endocrine abnormalities identified to date, relate to the expression of prolactin. Pituitary prolactin message levels and protein content of adult female mutant mice are reduced by 30–40% compared with wild-type controls. Mutant females fail to lactate and pups die of starvation/dehydration unless fostered onto wild-type mothers. Prolactin secretion in mutant females is markedly reduced at 7 days postpartum compared with wild-type controls with an associated failure in mammary gland maturation. There is an almost complete abrogation of the proliferative response of the lactotroph to high doses of estrogen, with a failure to up-regulate prolactin release, STAT5 expression or to increase pituitary cell number. These data further support the hypothesis that galanin acts as a paracrine regulator of prolactin expression and as a growth factor to the lactotroph.
Resumo:
The endothelial isoform of NO synthase (eNOS) is targeted to sphingolipid-enriched signal-transducing microdomains in the plasma membrane termed caveolae. Among the caveolae-targeted sphingolipids are the ceramides, a class of acylated sphingosine compounds that have been implicated in diverse cellular responses. We have explored the role of ceramide analogues in eNOS signaling in cultured bovine aortic endothelial cells (BAEC). Addition of the ceramide analogue N-acetylsphingosine (C2-ceramide; 5 μM) to intact BAEC leads to a significant increase in NO synthase activity (assayed by using the fluorescent indicator 4,5-diaminofluorescein) and translocation of eNOS from the endothelial cell membrane to intracellular sites (measured by using quantitative immunofluorescence techniques); the biologically inactive ceramide N-acetyldihydrosphingosine is entirely without effect. C2-ceramide-induced eNOS activation and translocation are unaffected by the intracellular calcium chelator 1,2-bis-o-aminophenoxyethane-N,N,N′,N′-tetraacetic acid (BAPTA). Using the calcium-specific fluorescent indicator fluo-3, we also found that C2-ceramide activation of eNOS is unaccompanied by a drug-induced increase in intracellular calcium. These findings stand in sharp contrast to the mechanism by which bradykinin, estradiol, and other mediators acutely activate eNOS, in which a rapid, agonist-promoted increase in intracellular calcium is required. Finally, we show that treatment of BAEC with bradykinin causes a significant increase in cellular ceramide content; the response to bradykinin has an EC50 of 3 nM and is blocked by the bradykinin B2-receptor antagonist HOE140. Bradykinin-induced ceramide generation could represent a mechanism for longer-term regulation of eNOS activity. Our results suggest that ceramide functions independently of Ca2+-regulated pathways to promote activation and translocation of eNOS, and that this lipid mediator may represent a physiological regulator of eNOS in vascular endothelial cells.
Resumo:
There is considerable evidence from animal studies that gonadal steroid hormones modulate neuronal activity and affect behavior. To study this in humans directly, we used H215O positron-emission tomography to measure regional cerebral blood flow (rCBF) in young women during three pharmacologically controlled hormonal conditions spanning 4–5 months: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate (Lupron), Lupron plus estradiol replacement, and Lupron plus progesterone replacement. Estradiol and progesterone were administered in a double-blind cross-over design. On each occasion positron-emission tomography scans were performed during (i) the Wisconsin Card Sorting Test, a neuropsychological test that physiologically activates prefrontal cortex (PFC) and an associated cortical network including inferior parietal lobule and posterior inferolateral temporal gyrus, and (ii) a no-delay matching-to-sample sensorimotor control task. During treatment with Lupron alone (i.e., with virtual absence of gonadal steroid hormones), there was marked attenuation of the typical Wisconsin Card Sorting Test activation pattern even though task performance did not change. Most strikingly, there was no rCBF increase in PFC. When either progesterone or estrogen was added to the Lupron regimen, there was normalization of the rCBF activation pattern with augmentation of the parietal and temporal foci and return of the dorsolateral PFC activation. These data directly demonstrate that the hormonal milieu modulates cognition-related neural activity in humans.