2 resultados para equilibrium selection

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nicotinic acetylcholine receptor (AChR) controls signal transmission between cells in the nervous system. Abused drugs such as cocaine inhibit this receptor. Transient kinetic investigations indicate that inhibitors decrease the channel-opening equilibrium constant [Hess, G. P. & Grewer, C. (1998) Methods Enzymol. 291, 443–473]. Can compounds be found that compete with inhibitors for their binding site but do not change the channel-opening equilibrium? The systematic evolution of RNA ligands by exponential enrichment methodology and the AChR in Torpedo californica electroplax membranes were used to find RNAs that can displace inhibitors from the receptor. The selection of RNA ligands was carried out in two consecutive steps: (i) a gel-shift selection of high-affinity ligands bound to the AChR in the electroplax membrane, and (ii) subsequent use of nitrocellulose filters to which both the membrane-bound receptor and RNAs bind strongly, but from which the desired RNA can be displaced from the receptor by a high-affinity AChR inhibitor, phencyclidine. After nine selection rounds, two classes of RNA molecules that bind to the AChR with nanomolar affinities were isolated and sequenced. Both classes of RNA molecules are displaced by phencyclidine and cocaine from their binding site on the AChR. Class I molecules are potent inhibitors of AChR activity in BC3H1 muscle cells, as determined by using the whole-cell current-recording technique. Class II molecules, although competing with AChR inhibitors, do not affect receptor activity in this assay; such compounds or derivatives may be useful for alleviating the toxicity experienced by millions of addicts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concepts of demography provide a means of combining the ecological approach to population growth with the genetical approach to natural selection. We have utilized the demographic theory of natural selection developed by Norton and Charlesworth to analyze life history schedules of births and deaths for populations of genotypes in Drosophila pseudoobscura. Our populations illustrate a stable genetic equilibrium, an unstable genetic equilibrium, and a case of no equilibrium. We have estimated population growth rates and Darwinian fitnesses of the genotypes and have explored the role of population growth in determining natural selection. The age-specific rates of births and deaths provide insights into components of selection. Both viability and fertility are important components in our populations.