2 resultados para endemicity

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cDNA from adult female Onchocerca volvulus encoding the C-terminal portion of a tropomyosin isoform (termed MOv-14) has been shown previously to confer protective immunity in rodent models of onchocerciasis. The full-length sequence (designated Ov-tmy-1) obtained by PCR amplification, codes for a protein of 33 kDa and shares 91% identity with tropomyosins from other nematodes, falling to 57% identity with human α-tropomyosin. Ov-TMY-1 migrates with an apparent molecular mass of 42 kDa on SDS/PAGE and is present in all life-cycle stages, as determined by immunoblotting. Immunogold electron microscopy identified antigenic sites within muscle blocks and the cuticle of microfilariae and infective larvae. Anti-MOv14 antibodies were abundant in mice exhibiting serum-transferable protection against microfilariae conferred by vaccination with a PBS-soluble parasite extract. In contrast, little or no MOv14-specific antibody was present in mice inoculated with live microfilariae, in which resistance is mediated by antibody-independent mechanisms. In human infections, there was an inverse correlation between anti-tropomyosin IgG levels and densities of microfilariae in the skin. Seropositivity varied with the relative endemicity of infection. An immunodominant B cell epitope within Ov-TMY-1 (AQLLAEEADRKYD) was mapped to the N terminus of the MOv14 protein by using sera from protectively vaccinated mice. Intriguingly, the sequence coincides with an IgE-binding epitope within shrimp tropomyosin, believed to be responsible for hypersensitivity in individuals exhibiting allergy to shellfish. IgG and IgE antibodies reacting with the O. volvulus epitope were detected in human infections. It is concluded that antibody responses to tropomyosin may be important in limiting microfilarial densities in a proportion of individuals with onchocerciasis and have the potential to mediate hypersensitivity reactions to dead microfilariae, raising the possibility of a link with the immunopathology of infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the South West Pacific region, the striking geographical correlation between the frequency of α+-thalassemia and the endemicity of Plasmodium falciparum suggests that this hemoglobinopathy provides a selective advantage against malaria. In Vanuatu, paradoxically, α+-thalassemia increases the incidence of contracting mild malaria in the first 2 years of life, but severe disease was too uncommon to assess adequately. Therefore, we undertook a prospective case-control study of children with severe malaria on the north coast of Papua New Guinea, where malaria transmission is intense and α+-thalassemia affects more than 90% of the population. Compared with normal children, the risk of having severe malaria was 0.40 (95% confidence interval 0.22–0.74) in α+-thalassemia homozygotes and 0.66 (0.37–1.20) in heterozygotes. Unexpectedly, the risk of hospital admission with infections other than malaria also was reduced to a similar degree in homozygous (0.36; 95% confidence interval 0.22–0.60) and heterozygous (0.63; 0.38–1.07) children. This clinical study demonstrates that a malaria resistance gene protects against disease caused by infections other than malaria. The mechanism of the remarkable protective effect of α+-thalassemia against severe childhood disease remains unclear but must encompass the clear interaction between this hemoglobinopathy and both malarial and nonmalarial infections.