5 resultados para elliptic curves

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fix an isogeny class

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let E be a modular elliptic curve over ℚ, without complex multiplication; let p be a prime number where E has good ordinary reduction; and let F∞ be the field obtained by adjoining to ℚ all p-power division points on E. Write G∞ for the Galois group of F∞ over ℚ. Assume that the complex L-series of E over ℚ does not vanish at s = 1. If p ⩾ 5, we make a precise conjecture about the value of the G∞-Euler characteristic of the Selmer group of E over F∞. If one makes a standard conjecture about the behavior of this Selmer group as a module over the Iwasawa algebra, we are able to prove our conjecture. The crucial local calculations in the proof depend on recent joint work of the first author with R. Greenberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi’s (1829) 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the η-function identities in appendix I of Macdonald’s work [Macdonald, I. G. (1972) Invent. Math. 15, 91–143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415–456] identities involving representing a positive integer by sums of 4n2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson’s Cℓ nonterminating 6φ5 summation theorem, and Andrews’ basic hypergeometric series proof of Jacobi’s 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n2 or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We combine infinite dimensional analysis (in particular a priori estimates and twist positivity) with classical geometric structures, supersymmetry, and noncommutative geometry. We establish the existence of a family of examples of two-dimensional, twist quantum fields. We evaluate the elliptic genus in these examples. We demonstrate a hidden SL(2,ℤ) symmetry of the elliptic genus, as suggested by Witten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To provide a more general method for comparing survival experience, we propose a model that independently scales both hazard and time dimensions. To test the curve shape similarity of two time-dependent hazards, h1(t) and h2(t), we apply the proposed hazard relationship, h12(tKt)/ h1(t) = Kh, to h1. This relationship doubly scales h1 by the constant hazard and time scale factors, Kh and Kt, producing a transformed hazard, h12, with the same underlying curve shape as h1. We optimize the match of h12 to h2 by adjusting Kh and Kt. The corresponding survival relationship S12(tKt) = [S1(t)]KtKh transforms S1 into a new curve S12 of the same underlying shape that can be matched to the original S2. We apply this model to the curves for regional and local breast cancer contained in the National Cancer Institute's End Results Registry (1950-1973). Scaling the original regional curves, h1 and S1 with Kt = 1.769 and Kh = 0.263 produces transformed curves h12 and S12 that display congruence with the respective local curves, h2 and S2. This similarity of curve shapes suggests the application of the more complete curve shapes for regional disease as templates to predict the long-term survival pattern for local disease. By extension, this similarity raises the possibility of scaling early data for clinical trial curves according to templates of registry or previous trial curves, projecting long-term outcomes and reducing costs. The proposed model includes as special cases the widely used proportional hazards (Kt = 1) and accelerated life (KtKh = 1) models.