2 resultados para elicitins
em National Center for Biotechnology Information - NCBI
Resumo:
Elicitins are a family of small proteins secreted by Phytophthora species that have a high degree of homology and elicit defense reactions in tobacco (Nicotiana tabacum). They display acidic or basic characteristics, the acidic elicitins being less efficient in inducing plant necrosis. In this study we compared the binding properties of four elicitins (two basic and two acidic) and early-induced signal transduction events (Ca2+ influx, extracellular medium alkalinization, and active oxygen species production). The affinity for tobacco plasma membrane-binding sites and the number of binding sites were similar for all four elicitins. Furthermore, elicitins compete with one another for binding sites, suggesting that they interact with the same receptor. The four elicitins induced Ca2+ influx, extracellular medium alkalinization, and the production of active oxygen species in tobacco cell suspensions, but the intensity and kinetics of these effects were different from one elicitin to another. As a general observation the concentrations that induce similar levels of biological activities were lower for basic elicitins (with the exception of cinnamomin-induced Ca2+ uptake). The qualitative similarity of early events induced by elicitins indicates a common transduction scheme, whereas fine signal transduction tuning is different in each elicitin.
Resumo:
Elicitins are a family of small proteins secreted by species of Phytophthora. They are thought to be major determinants of the resistance response of tobacco against these oomycetes, since purified elicitins, alone and at low concentrations, can induce vigorous defense responses in tobacco (i.e., hypersensitive cell death and resistance against subsequent pathogen attack), and in vitro elicitin production by Phytophthora isolates is strongly negatively correlated with their pathogenicity on tobacco plants. A number of elicitins have been purified and their amino acid sequences have been determined and found to be conserved. A three-dimensional structure for elicitin is emerging from nuclear magnetic resonance studies. Two structural classes, alpha and beta, are distinguished by their biological effects when applied to decapitated stems or petioles; the beta class causes more necrosis on leaves and provides better subsequent protection against pathogen attack. However, both these classes of elicitins will similarly cause necrosis when each is, instead, directly infiltrated into tobacco leaf panels. Effects of elicitins on tobacco cells include rapid electrolyte leakage, changes in protein phosphorylation and amounts of active oxygen species, and later production of ethylene and capsidiol. The sites of initial interaction with tobacco cells are unknown, but the interaction appears to induce general defense-related responses.