3 resultados para electron emission yield

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design, realization, and test performances of an electronic junction based on single-electron phenomena that works in the air at room temperature are hereby reported. The element consists of an electrochemically etched sharp tungsten stylus over whose tip a nanometer-size crystal was synthesized. Langmuir-Blodgett films of cadmium arachidate were transferred onto the stylus and exposed to a H2S atmosphere to yield CdS nanocrystals (30-50 angstrom in diameter) imbedded into an organic matrix. The stylus, biased with respect to a flat electrode, was brought to the tunnel distance from the film and a constant gap value was maintained by a piezo-electric actuator driven by a feedback circuit fed by the tunneling current. With this set-up, it is possible to measure the behavior of the current flowing through the quantum dot when a bias voltage is applied. Voltage-current characteristics measured in the system displayed single-electron trends such as a Coulomb blockade and Coulomb staircase and revealed capacitance values as small as 10(-19) F.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under conditions (0.2% CO2; 1% O2) that allow high rates of photosynthesis, chlorophyll fluorescence was measured simultaneously with carbon assimilation at various light intensities in spinach (Spinacia oleracea) leaves. Using a stoichiometry of 3 ATP/CO2 and the known relationship between ATP synthesis rate and driving force (Delta pH), we calculated the light-dependent pH gradient (Delta pH) across the thylakoid membrane in intact leaves. These Delta pH values were correlated with the photochemical (qP) and nonphotochemical (qN) quenching of chlorophyll fluorescence and with the quantum yield of photosystem II (phiPSII). At Delta pH > 2.1 all three parameters (qP, qN, and phiPSII) changed very steeply with increasing DeltapH (decreasing pH in the thylakoid). The observed pH dependences followed hexacooperative titration curves with slightly different pKa values. The significance of the steep pH dependences with slightly different pKa values is discussed in relation to the regulation of photosynthetic electron transport in intact leaves.