19 resultados para electro-optic modulator

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphs of second harmonic generation coefficients and electro-optic coefficients (measured by ellipsometry, attenuated total reflection, and two-slit interference modulation) as a function of chromophore number density (chromophore loading) are experimentally observed to exhibit maxima for polymers containing chromophores characterized by large dipole moments and polarizabilities. Modified London theory is used to demonstrated that this behavior can be attributed to the competition of chromophore-applied electric field and chromophore–chromophore electrostatic interactions. The comparison of theoretical and experimental data explains why the promise of exceptional macroscopic second-order optical nonlinearity predicted for organic materials has not been realized and suggests routes for circumventing current limitations to large optical nonlinearity. The results also suggest extensions of measurement and theoretical methods to achieve an improved understanding of intermolecular interactions in condensed phase materials including materials prepared by sequential synthesis and block copolymer methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cultured oligodendrocytes isolated from perinatal rat optic nerves, we have analyzed the expression of ionotropic glutamate receptor subunits as well as the effect of the activation of these receptors on oligodendrocyte viability. Reverse transcription–PCR, in combination with immunocytochemistry, demonstrated that most oligodendrocytes differentiated in vitro express the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR3 and GluR4 and the kainate receptor subunits GluR6, GluR7, KA1 and KA2. Acute and chronic exposure to kainate caused extensive oligodendrocyte death in culture. This effect was partially prevented by the AMPA receptor antagonist GYKI 52466 and was completely abolished by the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that both AMPA and kainate receptors mediate the observed kainate toxicity. Furthermore, chronic application of kainate to optic nerves in vivo resulted in massive oligodendrocyte death which, as in vitro, could be prevented by coinfusion of the toxin with CNQX. These findings suggest that excessive activation of the ionotropic glutamate receptors expressed by oligodendrocytes may act as a negative regulator of the size of this cell population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus organizes behavioral rhythms, such as the sleep–wake cycle, on a near 24-h time base and synchronizes them to environmental day and night. Light information is transmitted to the SCN by direct retinal projections via the retinohypothalamic tract (RHT). Both glutamate (Glu) and pituitary adenylyl cyclase-activating peptide (PACAP) are localized within the RHT. Whereas Glu is an established mediator of light entrainment, the role of PACAP is unknown. To understand the functional significance of this colocalization, we assessed the effects of nocturnal Glu and PACAP on phasing of the circadian rhythm of neuronal firing in slices of rat SCN. When coadministered, PACAP blocked the phase advance normally induced by Glu during late night. Surprisingly, blocking PACAP neurotransmission, with either PACAP6–38, a specific PACAP receptor antagonist, or anti-PACAP antibodies, augmented the Glu-induced phase advance. Blocking PACAP in vivo also potentiated the light-induced phase advance of the rhythm of hamster wheel-running activity. Conversely, PACAP enhanced the Glu-induced delay in the early night, whereas PACAP6–38 inhibited it. These results reveal that PACAP is a significant component of the Glu-mediated light-entrainment pathway. When Glu activates the system, PACAP receptor-mediated processes can provide gain control that generates graded phase shifts. The relative strengths of the Glu and PACAP signals together may encode the amplitude of adaptive circadian behavioral responses to the natural range of intensities of nocturnal light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have purified and characterized a 31-kDa protein named mapmodulin that binds to the microtubule-associated proteins (MAPs) MAP2, MAP4, and tau. Mapmodulin binds free MAPs in strong preference to microtubule-associated MAPs, and appears to do so via the MAP’s tubulin-binding domain. Mapmodulin inhibits the initial rate of MAP2 binding to microtubules, a property that may allow mapmodulin to displace MAPs from the path of organelles translocating along microtubules. In support of this possibility, mapmodulin stimulates the microtubule- and dynein-dependent localization of Golgi complexes in semi-intact CHO cells. To our knowledge, mapmodulin represents the first example of a protein that can bind and potentially regulate multiple MAP proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood–brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood–brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The depletion of inositol trisphosphate-sensitive intracellular pools of calcium causes activation of store-operated calcium (SOC) channels. Loperamide at 10–30 μM has no effect on intracellular calcium levels alone, but augments calcium levels in cultured cells when SOC channels have been activated. In HL-60 leukemic cells, the apparent positive modulatory effect of loperamide on SOC channels occurs when these channels have been activated after ATP, thapsigargin, or ionomycin-elicited depletion of calcium from intracellular storage sites. Loperamide has no effect when levels of intracellular calcium are elevated through a mechanism not involving SOC channels by using sphingosine. Loperamide caused augmentation of intracellular calcium levels after activation of SOC channels in NIH 3T3 fibroblasts, astrocytoma 1321N cells, smooth muscle DDT-MF2 cells, RBL-2H3 mast cells, and pituitary GH4C1 cells. Only in astrocytoma cells did loperamide cause an elevation in intracellular calcium in the absence of activation of SOC channels. The augmentation of intracellular calcium elicited by loperamide in cultured cells was dependent on extracellular calcium and was somewhat resistant to agents (SKF 96365, miconazole, clotrimazole, nitrendipine, and trifluoperazine) that in the absence of loperamide effectively blocked SOC channels. It appears that loperamide augments influx of calcium through activated SOC channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts to rescue retinal ganglion cells from retrograde degeneration have had limited success, and the residual function of surviving neurons is not known. Recently, it has been found that axotomized retinal ganglion cells die by apoptotic mechanisms. We have used adult transgenic mice overexpressing the Bcl-2 protein, a powerful inhibitor of apoptosis, as a model for preventing injury-induced cell death in vivo. Several months after axotomy, the majority of retinal ganglion cells survived and exhibited normal visual responses. In control wild-type mice, the vast majority of axotomized retinal ganglion cells degenerated, and the physiological responses were abolished. These results suggest that strategies aimed at increasing Bcl-2 expression, or mimicking its function, might effectively counteract trauma-induced cell death in the central nervous system. Neuronal survival is a necessary condition in the challenge for promoting regeneration and eventually restoring neuronal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report successful electro-gene therapy (EGT) by using plasmid DNA for tumor-bearing mice. Subcutaneously inoculated CT26 tumor was subjected to EGT, which consists of intratumoral injection of a naked plasmid encoding a marker gene or a therapeutic gene, followed by in vivo electroporation (EP). When this treatment modality is carried out with the plasmid DNA for the green fluorescent protein gene, followed by in vivo EP with the optimized pulse parameters, numerous intensely bright green fluorescent signals appeared within the tumor. EGT, by using the “A” fragment of the diphtheria toxin gene significantly inhibited the growth of tumors, by about 30%, on the flank of mice. With the herpes simplex virus thymidine kinase gene, followed by systemic injection of ganciclovir, EGT was far more effective in retarding tumor growth, varying between 50% and 90%, compared with the other controls. Based on these results, it appears that EGT can be used successfully for treating murine solid tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leptin acts as a potent inhibitory factor against obesity by regulating energy expenditure, food intake, and adiposity. The obese diabetic db/db mouse, which has defects in leptin receptor, displays enhanced neural responses and elevated behavioral preference to sweet stimuli. Here, we show the effects of leptin on the peripheral taste system. An administration of leptin into lean mice suppressed responses of peripheral taste nerves (chorda tympani and glossopharyngeal) to sweet substances (sucrose and saccharin) without affecting responses to sour, salty, and bitter substances. Whole-cell patch-clamp recordings of activities of taste receptor cells isolated from circumvallate papillae (innervated by the glossopharyngeal nerve) demonstrated that leptin activated outward K+ currents, which resulted in hyperpolarization of taste cells. The db/db mouse with impaired leptin receptors showed no such leptin suppression. Taste tissue (circumvallate papilla) of lean mice expressed leptin-receptor mRNA and some of the taste cells exhibited immunoreactivities to antibodies of the leptin receptor. Taken together, these observations suggest that the taste organ is a peripheral target for leptin, and that leptin may be a sweet-sensing modulator (suppressor) that may take part in regulation of food intake. Defects in this leptin suppression system in db/db mice may lead to their enhanced peripheral neural responses and enhanced behavioral preferences for sweet substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe experiments on behaving rats with electrodes implanted on the cornea, in the optic chiasm, and on the visual cortex; in addition, two red light-emitting diodes (LED) are permanently attached to the skull over the left eye. Recordings timelocked to the LED flashes reveal both the local events at each electrode site and the orderly transfer of visual information from retina to cortex. The major finding is that every stimulus, regardless of its luminance, duration, or the state of retinal light adaptation, elicits an optic nerve volley with a latency of about 10 ms and a duration of about 300 ms. This phenomenon has not been reported previously, so far as we are aware. We conclude that the retina, which originates from the forebrain of the developing embryo, behaves like a typical brain structure: it translates, within a few hundred milliseconds, the chemical information in each pattern of bleached photoreceptors into a corresponding pattern of ganglion cell neuronal information that leaves via the optic nerve. The attributes of each rat ganglion cell appear to include whether the retinal neuropile calls on it to leave after a stimulus and, if so when, within a 300-ms poststimulus epoch. The resulting retinal analysis of the scene, on arrival at the cortical level, is presumed to participate importantly in the creation of visual perceptual experiences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have discovered that intracellular redox state appears to be a necessary and sufficient modulator of the balance between self-renewal and differentiation in dividing oligodendrocyte-type-2 astrocyte progenitor cells. The intracellular redox state of freshly isolated progenitors allows prospective isolation of cells with different self-renewal characteristics. Redox state is itself modulated by cell-extrinsic signaling molecules that alter the balance between self-renewal and differentiation: growth factors that promote self-renewal cause progenitors to become more reduced, while signaling molecules that promote differentiation cause progenitors to become more oxidized. Moreover, pharmacological antagonists of the redox effects of these cell-extrinsic signaling molecules antagonize their effects on self-renewal and differentiation, indicating that cell-extrinsic signaling molecules that modulate this balance converge on redox modulation as a critical component of their effector mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The opportunistic pathogenic bacterium Pseudomonas aeruginosa uses quorum-sensing signaling systems as global regulators of virulence genes. There are two quorum-sensing signal receptor and signal generator pairs, LasR–LasI and RhlR–RhlI. The recently completed P. aeruginosa genome-sequencing project revealed a gene coding for a homolog of the signal receptors, LasR and RhlR. Here we describe a role for this gene, which we call qscR. The qscR gene product governs the timing of quorum-sensing-controlled gene expression and it dampens virulence in an insect model. We present evidence that suggests the primary role of QscR is repression of lasI. A qscR mutant produces the LasI-generated signal prematurely, and this results in premature transcription of a number of quorum-sensing-regulated genes. When fed to Drosophila melanogaster, the qscR mutant kills the animals more rapidly than the parental P. aeruginosa. The repression of lasI by QscR could serve to ensure that quorum-sensing-controlled genes are not activated in environments where they are not useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary sensory neurons that respond to noxious stimulation and project to the spinal cord are known to fall into two distinct groups: one sensitive to nerve growth factor and the other sensitive to glial cell-line-derived neurotrophic factor. There is currently considerable interest in the ways in which these factors may regulate nociceptor properties. Recently, however, it has emerged that another trophic factor—brain-derived neurotrophic factor (BDNF)—may play an important neuromodulatory role in the dorsal horn of the spinal cord. BDNF meets many of the criteria necessary to establish it as a neurotransmitter/neuromodulator in small-diameter nociceptive neurons. It is synthesized by these neurons and packaged in dense core vesicles in nociceptor terminals in the superficial dorsal horn. It is markedly up-regulated in inflammatory conditions in a nerve growth factor-dependent fashion. Postsynaptic cells in this region express receptors for BDNF. Spinal neurons show increased excitability to nociceptive inputs after treatment with exogenous BDNF. There are both electrophysiological and behavioral data showing that antagonism of BDNF at least partially prevents some aspects of central sensitization. Together, these findings suggest that BDNF may be released from primary sensory nociceptors with activity, particularly in some persistent pain states, and may then increase the excitability of rostrally projecting second-order systems. BDNF released from nociceptive terminals may thus contribute to the sensory abnormalities associated with some pathophysiological states, notably inflammatory conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although sessile in nature, plants are able to use a number of mechanisms to modify their morphology in response to changing environmental conditions. Differential growth is one such mechanism. Despite its importance in plant development, little is known about the molecular events regulating the establishment of differential growth. Here we report analyses of the nph4 (nonphototropic hypocotyl) mutants of Arabidopsis that suggest that the NPH4 protein plays a central role in the modulation of auxin-dependent differential growth. Results from physiological studies demonstrate that NPH4 activity is conditionally required for a number of differential growth responses, including phototropism, gravitropism, phytochrome-dependent hypocotyl curvature, apical hook maintenance, and abaxial/adaxial leaf-blade expansion. The nph4 mutants exhibited auxin resistance and severely impaired auxin-dependent gene expression, indicating that the defects associated with differential growth likely arise because of altered auxin responsiveness. Moreover, the auxin signaling events mediating phototropism are genetically correlated with the abundance of the NPH4 protein.