23 resultados para egg-bearing

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sperm acrosome reaction is a Ca2+-dependent exocytotic event that is triggered by adhesion to the mammalian egg’s zona pellucida. Previous studies using ion-selective fluorescent probes suggested a role of voltage-sensitive Ca2+ channels in acrosome reactions. Here, whole-cell patch clamp techniques are used to demonstrate the expression of functional T-type Ca2+ channels during mouse spermatogenesis. The germ cell T current is inhibited by antagonists of T-type channels (pimozide and amiloride) as well as by antagonists whose major site of action is the somatic cell L-type Ca2+ channel (1,4-dihydropyridines, arylalkylamines, benzothiazapines), as has also been reported for certain somatic cell T currents. In sperm, inhibition of T channels during gamete interaction inhibits zona pellucida-dependent Ca2+ elevations, as demonstrated by ion-selective fluorescent probes, and also inhibits acrosome reactions. These studies directly link sperm T-type Ca2+ channels to fertilization. In addition, the kinetics of channel inhibition by 1,4-dihydropyridines suggests a mechanism for the reported contraceptive effects of those compounds in human males.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of mouse models of human cancer have established the existence of multiple tumor modifiers that influence parameters of cancer susceptibility such as tumor multiplicity, tumor size, or the probability of malignant progression. We have carried out an analysis of skin tumor susceptibility in interspecific Mus musculus/Mus spretus hybrid mice and have identified another seven loci showing either significant (six loci) or suggestive (one locus) linkage to tumor susceptibility or resistance. A specific search was carried out for skin tumor modifier loci associated with time of survival after development of a malignant tumor. A combination of resistance alleles at three markers [D6Mit15 (Skts12), D7Mit12 (Skts2), and D17Mit7 (Skts10)], all of which are close to or the same as loci associated with carcinoma incidence and/or papilloma multiplicity, is significantly associated with increased survival of mice with carcinomas, whereas the reverse combination of susceptibility alleles is significantly linked to early mortality caused by rapid carcinoma growth (χ2 = 25.22; P = 5.1 × 10−8). These data indicate that host genetic factors may be used to predict carcinoma growth rate and/or survival of individual backcross mice exposed to the same carcinogenic stimulus and suggest that mouse models may provide an approach to the identification of genetic modifiers of cancer survival in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetochores are complex macromolecular structures that link mitotic chromosomes to spindle microtubules. Although a small number of kinetochore components have been identified, including the kinesins CENP-E and XKCM1 as well as cytoplasmic dynein, neither how these and other proteins are organized to produce a kinetochore nor their exact functions within this structure are understood. For this reason, we have developed an assay that allows kinetochore components to assemble onto discrete foci on in vitro-condensed chromosomes. The source of the kinetochore components is a clarified cell extract from Xenopus eggs that can be fractionated or immunodepleted of individual proteins. Kinetochore assembly in these clarified extracts requires preincubating the substrate sperm nuclei in an extract under low ATP conditions. Immunodepletion of XKCM1 from the extracts prevents the localization of kinetochore-associated XKCM1 without affecting the targeting of CENP-E and cytoplasmic dynein or the binding of monomeric tubulin to the kinetochore. Extension of this assay for the analysis of other components should help to dissect the protein–protein interactions involved in kinetochore assembly and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cdc25, the dual-specificity phosphatase that dephosphorylates the Cdc2–cyclin B complex at mitosis, is highly regulated during the cell cycle. In Xenopus egg extracts, Cdc25 is associated with two isoforms of the 14-3-3 protein. Cdc25 is complexed primarily with 14-3-3ε and to a lesser extent with 14-3-3ζ. The association of these 14-3-3 proteins with Cdc25 varies dramatically during the cell cycle: binding is high during interphase but virtually absent at mitosis. Interaction with 14-3-3 is mediated by phosphorylation of Xenopus Cdc25 at Ser-287, which resides in a consensus 14-3-3 binding site. Recombinant Cdc25 with a point mutation at this residue (Cdc25-S287A) is incapable of binding to 14-3-3. Addition of the Cdc25-S287A mutant to Xenopus egg extracts accelerates mitosis and overrides checkpoint-mediated arrests of mitotic entry due to the presence of unreplicated and damaged DNA. These findings indicate that 14-3-3 proteins act as negative regulators of Cdc25 in controlling the G2–M transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have added constitutively active MAP kinase/ERK kinase (MEK), an activator of the mitogen-activated protein kinase (MAPK) signaling pathway, to cycling Xenopus egg extracts at various times during the cell cycle. p42MAPK activation during entry into M-phase arrested the cell cycle in metaphase, as has been shown previously. Unexpectedly, p42MAPK activation during interphase inhibited entry into M-phase. In these interphase-arrested extracts, H1 kinase activity remained low, Cdc2 was tyrosine phosphorylated, and nuclei continued to enlarge. The interphase arrest was overcome by recombinant cyclin B. In other experiments, p42MAPK activation by MEK or by Mos inhibited Cdc2 activation by cyclin B. PD098059, a specific inhibitor of MEK, blocked the effects of MEK(QP) and Mos. Mos-induced activation of p42MAPK did not inhibit DNA replication. These results indicate that, in addition to the established role of p42MAPK activation in M-phase arrest, the inappropriate activation of p42MAPK during interphase prevents normal entry into M-phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic histone H1 reduces both the rate and extent of DNA replication in Xenopus egg extract. We show here that H1 inhibits replication directly by reducing the number of replication forks, but not the rate of fork progression, in Xenopus sperm nuclei. Density substitution experiments demonstrate that those forks that are active in H1 nuclei elongate to form large tracts of fully replicated DNA, indicating that inhibition is due to a reduction in the frequency of initiation and not the rate or extent of elongation. The observation that H1 dramatically reduces the number of replication foci in sperm nuclei supports this view. The establishment of replication competent DNA in egg extract requires the assembly of prereplication complexes (pre-RCs) on sperm chromatin. H1 reduces binding of the pre-RC proteins, XOrc2, XCdc6, and XMcm3, to chromatin. Replication competence can be restored in these nuclei, however, only under conditions that promote the loss of H1 from chromatin and licensing of the DNA. Thus, H1 inhibits replication in egg extract by preventing the assembly of pre-RCs on sperm chromatin, thereby reducing the frequency of initiation. These data raise the interesting possibility that H1 plays a role in regulating replication origin use during Xenopus development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work has established that activation of Mos, Mek, and p42 mitogen-activated protein (MAP) kinase can trigger release from G2-phase arrest in Xenopus oocytes and oocyte extracts and can cause Xenopus embryos and extracts to arrest in mitosis. Herein we have found that activation of the MAP kinase cascade can also bring about an interphase arrest in cycling extracts. Activation of the cascade early in the cycle was found to bring about the interphase arrest, which was characterized by an intact nuclear envelope, partially condensed chromatin, and interphase levels of H1 kinase activity, whereas activation of the cascade just before mitosis brought about the mitotic arrest, with a dissolved nuclear envelope, condensed chromatin, and high levels of H1 kinase activity. Early MAP kinase activation did not interfere significantly with DNA replication, cyclin synthesis, or association of cyclins with Cdc2, but it did prevent hyperphosphorylation of Cdc25 and Wee1 and activation of Cdc2/cyclin complexes. Thus, the extracts were arrested in a G2-like state, unable to activate Cdc2/cyclin complexes. The MAP kinase-induced G2 arrest appeared not to be related to the DNA replication checkpoint and not to be mediated through inhibition of Cdk2/cyclin E; evidently a novel mechanism underlies this arrest. Finally, we found that by delaying the inactivation of MAP kinase during release of a cytostatic factor-arrested extract from its arrest state, we could delay the subsequent entry into mitosis. This finding suggests that it is the persistence of activated MAP kinase after fertilization that allows the occurrence of a G2-phase during the first mitotic cell cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The larva of the green lacewing (Ceraeochrysa cubana) (Neuroptera, Chrysopidae) is a natural predator of eggs of Utetheisa ornatrix (Lepidoptera, Arctiidae), a moth that sequesters pyrrolizidine alkaloids from its larval foodplant (Fabaceae, Crotalaria spp.). Utetheisa eggs are ordinarily endowed with the alkaloid. Alkaloid-free Utetheisa eggs, produced experimentally, are pierced by the larva with its sharp tubular jaws and sucked out. Alkaloid-laden eggs, in contrast, are rejected. When attacking an Utetheisa egg cluster (numbering on average 20 eggs), the larva subjects it to an inspection process. It prods and/or pierces a small number of eggs (on average two to three) and, if these contain alkaloid, it passes “negative judgement” on the remainder of the cluster and turns away. Such generalization on the part of the larva makes sense, because the eggs within clusters differ little in alkaloid content. There is, however, considerable between-cluster variation in egg alkaloid content, so clusters in nature can be expected to range widely in palatability. To check each cluster for acceptability must therefore be adaptive for the larva, just as it must be adaptive for Utetheisa to lay its eggs in large clusters and to apportion alkaloid evenly among eggs of a cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site-specific photocleavage of hen egg lysozyme and bovine serum albumin (BSA) by N-(l-phenylalanine)-4-(1-pyrene)butyramide (Py-Phe) is reported. Py-Phe binds to lysozyme and BSA with binding constants 2.2 ± 0.3 × 105 M−1 and 6.5 ± 0.4 × 107 M−1, respectively. Photocleavage of lysozyme and BSA was achieved with high specificity when a mixture of protein, Py-Phe, and an electron acceptor, cobalt(III) hexammine (CoHA), was irradiated at 344 nm. Quantum yields of photocleavage of lysozyme and BSA were 0.26 and 0.0021, respectively. No protein cleavage was observed in the absence of Py-Phe, CoHA, or light. N-terminal sequencing of the protein fragments indicated a single cleavage site of lysozyme between Trp-108 and Val-109, whereas the cleavage of BSA was found to be between Leu-346 and Arg-347. Laser flash photolysis studies of a mixture of protein, Py-Phe, and CoHA showed a strong transient with absorption centered at ≈460 nm, corresponding to pyrene cation radical. Quenching of the singlet excited state of Py-Phe by CoHA followed by the reaction of the resulting pyrenyl cation radical with the protein backbone may be responsible for the protein cleavage. The high specificity of photocleavage may be valuable in targeting specific sites of proteins with small molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several unanswered questions in T cell immunobiology relating to intracellular processing or in vivo antigen presentation could be approached if convenient, specific, and sensitive reagents were available for detecting the peptide–major histocompatibility complex (MHC) class I or class II ligands recognized by αβ T cell receptors. For this reason, we have developed a method using homogeneously loaded peptide–MHC class II complexes to generate and select specific mAb reactive with these structures using hen egg lysozyme (HEL) and I-Ak as a model system. mAbs specific for either HEL-(46–61)–Ak or HEL-(116–129)–Ak have been isolated. They cross-react with a small subset of I-Ak molecules loaded with self peptides but can nonetheless be used for flow cytometry, immunoprecipitation, Western blotting, and intracellular immunofluorescence to detect specific HEL peptide–MHC class II complexes formed by either peptide exposure or natural processing of native HEL. An example of the utility of these reagents is provided herein by using one of the anti-HEL-(46–61)–Ak specific mAbs to visualize intracellular compartments where I-Ak is loaded with HEL-derived peptides early after antigen administration. Other uses, especially for in vivo tracking of specific ligand-bearing antigen-presenting cells, are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate stem-cell antigen (PSCA) is a cell-surface antigen expressed in normal prostate and overexpressed in prostate cancer tissues. PSCA expression is detected in over 80% of patients with local disease, and elevated levels of PSCA are correlated with increased tumor stage, grade, and androgen independence, including high expression in bone metastases. We evaluated the therapeutic efficacy of anti-PSCA mAbs in human prostate cancer xenograft mouse models by using the androgen-dependent LAPC-9 xenograft and the androgen-independent recombinant cell line PC3-PSCA. Two different anti-PSCA mAbs, 1G8 (IgG1κ) and 3C5 (IgG2aκ), inhibited formation of s.c. and orthotopic xenograft tumors in a dose-dependent manner. Furthermore, administration of anti-PSCA mAbs led to retardation of established orthotopic tumor growth and inhibition of metastasis to distant sites, resulting in a significant prolongation in the survival of tumor-bearing mice. These studies suggest PSCA as an attractive target for immunotherapy and demonstrate the therapeutic potential of anti-PSCA mAbs for the treatment of local and metastatic prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA polymerase ɛ (Polɛ) is thought to be involved in DNA replication, repair, and cell-cycle checkpoint control in eukaryotic cells. Although the requirement of other replicative DNA polymerases, DNA polymerases α and δ (Polα and δ), for chromosomal DNA replication has been well documented by genetic and biochemical studies, the precise role, if any, of Polɛ in chromosomal DNA replication is still obscure. Here we show, with the use of a cell-free replication system with Xenopus egg extracts, that Xenopus Polɛ is indeed required for chromosomal DNA replication. In Polɛ-depleted extracts, the elongation step of chromosomal DNA replication is markedly impaired, resulting in significant reduction of the overall DNA synthesis as well as accumulation of small replication intermediates. Moreover, despite the decreased DNA synthesis, excess amounts of Polα are loaded onto the chromatin template in Polɛ-depleted extracts, indicative of the failure of proper assembly of DNA synthesis machinery at the fork. These findings strongly suggest that Polɛ, along with Polα and Polδ, is necessary for coordinated chromosomal DNA replication in eukaryotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SJL mice spontaneously develop pre-B-cell lymphoma that we hypothesized might stimulate macrophages to produce nitric oxide (NO.). Transplantation of an aggressive lymphoma (RcsX) was used to induce tumor formation. Urinary nitrate excretion was measured as an index of NO. production and was found to increase 50-fold by 13 days after tumor injection. NO. production was prevented by the addition of a nitric oxide synthase (NOS) inhibitor. The expression of inducible NOS (iNOS) in various tissues was estimated by Western blot analysis and localized by immunohistochemistry. The synthase was detected in the spleen, lymph nodes, and liver of treated but not control mice. To assess whether the iNOS-staining cells were macrophages, spleen sections from ResX-bearing animals were costained with anti-iNOS antibody and the anti-macrophage antibody moma-2. Expression of iNOS was found to be limited to a subset of the macrophage population. The concentration of gamma-interferon, a cytokine known to induce NO. production by macrophages, in the serum of tumor-bearing mice, was measured and found to be elevated 25-fold above untreated mice. The ability of ResX-activated macrophages to inhibit splenocyte growth in primary culture was estimated and macrophage-derived NO. was found to inhibit cell division 10-fold. Our findings demonstrate that ResX cells stimulate NO. production by macrophages in the spleen and lymph nodes of SJL mice, and we believe this experimental model will prove useful for study of the toxicological effects of NO. under physiological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Xenopus egg extracts, DNA strand breaks (nicks) located 3' or 5' to a mismatch cause an overall 3-fold stimulation of the repair of the mismatch in circular heteroduplex DNA molecules. The increase in mismatch repair is almost entirely due to an increase in repair of the nicked strand, which is stimulated 5-fold. Repair synthesis is centered to the mismatch site, decreases symmetrically on both sides, and its position is not significantly altered by the presence of the nick. Therefore, it appears that in the Xenopus germ cells, the mismatch repair system utilizes nicks as signals for the induction and direction of mismatch repair, but not as the start or end point for excision and resynthesis.