5 resultados para edge-to-edge grain crushing

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important determinant of wheat grain quality is the hardness of the grain. The trait is controlled by a major locus, Ha, on the short arm of chromosome 5D. Purified starch granules from soft-grained wheats have associated with them 15-kDa polypeptides called grain softness proteins (GSPs) or "friabilins." Genes that encode one family of closely related GSP polypeptides - GSP-1 genes - were mapped using chromosome substitution lines to the group 5 chromosomes. An F2 population segregating for hard and soft alleles at the Ha locus on a near-isogenic background was used in a single-seed study of the inheritance of grain softness and of GSP-1 alleles. Grain softness versus grain hardness was inherited in a 3:1 ratio. The presence versus absence of GSPs in single seed starch preparations was coinherited with grain softness versus hardness. This showed that grain softness is primarily determined by seed, and not by maternal, genotype. In addition, no recombination was detected in 44 F2 plants between GSP-1 restriction fragment length polymorphisms and Ha alleles. Differences between hard and soft wheat grains in membrane structure and lipid extractability have been described and, of the three characterized proteins that are part of the mixture of 15-kDa polypeptides called GSPs, at least two, and probably all three, are proteins that bind polar lipids. The data are interpreted to suggest that the Ha locus may encode one or more members of a large family of lipid-binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endosperm development in Zea mays is characterized by a period of intense mitotic activity followed by a period in which mitosis is essentially eliminated and the cell cycle becomes one of alternating S and G phases, leading to endoreduplication of the nuclear DNA. The endosperm represents a significant contribution to the grain yield of maize; thus, methods that facilitate the study of cellular kinetics may be useful in discerning cellular and molecular components of grain yield. Two mathematical models have been developed to describe the kinetics of endosperm growth. The first describes the kinetics of mitosis during endosperm development; the second describes the kinetics of DNA endoreduplication during endosperm development. The mitotic model is a modification of standard growth curves. The endoreduplication model is composed of six differential equations that represent the progression of nuclei from one DNA content to another during the endoreduplication process. Total nuclei number per endosperm and the number of 3C, 6C, 12C, 24C, 48C, and 96C nuclei per endosperm (C is the haploid DNA content per nucleus) for inbred W64A from 8 to 18 days after pollination were determined by flow cytometry. The results indicate that the change in number of nuclei expressed as a function of the number of days after pollination is the same from one yearly crop to another. These data were used in the model to determine the endosperm growth rate, the maximum nuclei number per endosperm, and transition rates from one C value to the next higher C value. The kinetics of endosperm development are reasonably well represented by the models. Thus, the models provide a means to quantify the complex pattern of endosperm development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sulfur K-edge x-ray absorption spectra for the amino acids cysteine and methionine and their corresponding oxidized forms cystine and methionine sulfoxide are presented. Distinct differences in the shape of the edge and the inflection point energy for cysteine and cystine are observed. For methionine sulfoxide the inflection point energy is 2.8 eV higher compared with methionine. Glutathione, the most abundant thiol in animal cells, also has been investigated. The x-ray absorption near-edge structure spectrum of reduced glutathione resembles that of cysteine, whereas the spectrum of oxidized glutathione resembles that of cystine. The characteristic differences between the thiol and disulfide spectra enable one to determine the redox status (thiol to disulfide ratio) in intact biological systems, such as unbroken cells, where glutathione and cyst(e)ine are the two major sulfur-containing components. The sulfur K-edge spectra for whole human blood, plasma, and erythrocytes are shown. The erythrocyte sulfur K-edge spectrum is similar to that of fully reduced glutathione. Simulation of the plasma spectrum indicated 32% thiol and 68% disulfide sulfur. The whole blood spectrum can be simulated by a combination of 46% disulfide and 54% thiol sulfur.