53 resultados para early endosome antigen 1

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small GTPase Rab4 is implicated in endocytosis in all cell types, but also plays a specific role in some regulated processes. To better understand the role of Rab4 in regulation of vesicular trafficking, we searched for an effector(s) that specifically recognizes its GTP-bound form. We cloned a ubiquitous 69-kDa protein, Rabip4, that behaves as a Rab4 effector in the yeast two-hybrid system and in the mammalian cell. Rabip4 contains two coiled-coil domains and a FYVE-finger domain. When expressed in CHO cells, Rabip4 is present in early endosomes, because it is colocated with endogenous Early Endosome Antigen 1, although it is absent from Rab11-positive recycling endosomes and Rab-7 positive late endosomes. The coexpression of Rabip4 with active Rab4, but not with inactive Rab4, leads to an enlargement of early endosomes. It strongly increases the degree of colocalization of markers of sorting (Rab5) and recycling (Rab11) endosomes with Rab4. Furthermore, the expression of Rabip4 leads to the intracellular retention of a recycling molecule, the glucose transporter Glut 1. We propose that Rabip4, an effector of Rab4, controls early endosomal traffic possibly by activating a backward transport step from recycling to sorting endosomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Afipia felis is a Gram-negative bacterium that causes some cases of human Cat Scratch Disease. A. felis can survive and multiply in several mammalian cell types, including macrophages, but the precise intracellular compartmentalization of A. felis-containing phagosomes is unknown. Here, we demonstrate that, in murine macrophages, most A. felis-containing phagosomes exclude lysosomal tracer loaded into macrophage lysosomes before, as well as endocytic tracer loaded after, establishment of an infection. Established Afipia-containing phagosomes possess neither early endosomal marker proteins [early endosome antigen 1 (EEA1), Rab5, transferrin receptor, trytophane aspartate containing coat protein (TACO)] nor late endosomal or lysosomal proteins [cathepsin D, β-glucuronidase, vacuolar proton-pumping ATPase, rab7, mannose-6-phosphate receptor, vesicle-associated membrane protein 8, lysosome-associated membrane proteins LAMP-1 and LAMP-2]. Those bacteria that will be found in a nonendosomal compartment enter the macrophage via an EEA1-negative compartment, which remains negative for LAMP-1. The smaller subpopulation of afipiae whose phagosomes will be part of the endocytic system enters into an EEA1-positive compartment, which also subsequently acquires LAMP-1. Killing of Afipia or opsonization with immune antibodies leads to a strong increase in the percentage of A. felis-containing phagosomes that interact with the endocytic system. We conclude that most phagosomes containing A. felis are disconnected from the endosome–lysosome continuum, that their unusual compartmentalization is decided at uptake, and that this compartmentalization requires bacterial viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synaptobrevins/vesicle-associated membrane proteins (VAMPs) together with syntaxins and a synaptosome-associated protein of 25 kDa (SNAP-25) are the main components of a protein complex involved in the docking and/or fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, biochemical, and cell biological characterization of a novel member of the synaptobrevin/VAMP family. The amino acid sequence of endobrevin has 32, 33, and 31% identity to those of synaptobrevin/VAMP-1, synaptobrevin/VAMP-2, and cellubrevin, respectively. Membrane fractionation studies demonstrate that endobrevin is enriched in membrane fractions that are also enriched in the asialoglycoprotein receptor. Indirect immunofluorescence microscopy establishes that endobrevin is primarily associated with the perinuclear vesicular structures of the early endocytic compartment. The preferential association of endobrevin with the early endosome was further established by electron microscopy (EM) immunogold labeling. In vitro binding assays show that endobrevin interacts with immobilized recombinant α-SNAP fused to glutathione S-transferase (GST). Our results highlight the general importance of members of the synaptobrevin/VAMP protein family in membrane traffic and provide new avenues for future functional and mechanistic studies of this protein as well as the endocytotic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Epstein–Barr virus (EBV) encoded nuclear antigen (EBNA) 1 is expressed in latently infected B lymphocytes that persist for life in healthy virus carriers and is the only viral protein regularly detected in all EBV associated malignancies. The Gly-Ala repeat domain of EBNA1 was shown to inhibit in cis the presentation of major histocompatibility complex (MHC) class I restricted cytotoxic T cell epitopes from EBNA4. It appears that the majority of antigens presented via the MHC I pathway are subject to ATP-dependent ubiquitination and degradation by the proteasome. We have investigated the influence of the repeat on this process by comparing the degradation of EBNA1, EBNA4, and Gly-Ala containing EBNA4 chimeras in a cell-free system. EBNA4 was efficiently degraded in an ATP/ubiquitin/proteasome-dependent fashion whereas EBNA1 was resistant to degradation. Processing of EBNA1 was restored by deletion of the Gly-Ala domain whereas insertion of Gly-Ala repeats of various lengths and in different positions prevented the degradation of EBNA4 without appreciable effect on ubiquitination. Inhibition was also achieved by insertion of a Pro-Ala coding sequence. The results suggest that the repeat may affect MHC I restricted responses by inhibiting antigen processing via the ubiquitin/proteasome pathway. The presence of regularly interspersed Ala residues appears to be important for the effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that CC chemokines induced a sustained increase in monocyte adhesion to intercellular adhesion molecule-1 that was mediated by Mac-1 (αMβ2) but not lymphocyte function–associated antigen-1 (LFA-1; αLβ2). In contrast, staining for an activation epitope revealed a rapid and transient up-regulation of LFA-1 activity by monocyte chemotactic protein-1 (MCP-1) in monocytes and Jurkat CCR2 chemokine receptor transfectants or by stromal-derived factor-1α in Jurkat cells. Differential kinetics for activation of Mac-1 (sustained) and LFA-1 (transient) avidity in response to stromal-derived factor-1α were confirmed by expression of αM or αL in αL-deficient Jurkat cells. Moreover, expression of chimeras containing αL and αM cytoplasmic domain exchanges indicated that α cytoplasmic tails conferred the specific mode of regulation. Coexpressing αM or chimeras in mutant Jurkat cells with a “gain of function” phenotype that results in constitutively active LFA-1 demonstrated that Mac-1 was not constitutively active, whereas constitutive activity was mediated via the αL cytoplasmic tail, implying the presence of distinct signaling pathways for LFA-1 and Mac-1. Transendothelial chemotaxis of monocytes in response to MCP-1 was dependent on LFA-1; however, Mac-1 was involved at MCP-1 concentrations stimulating its avidity, showing differential contributions of β2 integrins. Our data suggest that a specific regulation of β2 integrin avidity by chemokines may be important in leukocyte extravasation and may be triggered by distinct activation pathways transduced via the α subunit cytoplasmic domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrin receptors play a central role in the biology of lymphocytes, mediating crucial functional aspects of these cells, including adhesion, activation, polarization, migration, and signaling. Here we report that induction of activation of the β2-integrin lymphocyte function-associated antigen 1 (LFA-1) in T lymphocytes with divalent cations, phorbol esters, or stimulatory antibodies is followed by a dramatic polarization, resulting in a characteristic elongated morphology of the cells and the arrest of migrating lymphoblasts. This cellular polarization was prevented by treatment of cells with the specific tyrosine kinase inhibitor genistein. Furthermore, the interaction of the activated integrin LFA-1 with its ligand intercellular adhesion molecule 1 induced the activation of the cytoplasmic tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK-2). FAK activation reached a maximum after 45 min of stimulation; in contrast, PYK-2 activation peaked at 30 min, declining after 60 min. Upon polarization of lymphoblasts, FAK and PYK-2 redistributed from a diffuse localization in the cytoplasm to a region close to the microtubule-organizing center in these cells. FAK and PYK-2 activation was blocked when lymphoblasts were pretreated with actin and tubulin cytoskeleton-interfering agents, indicating its cytoskeletal dependence. Our results demonstrate that interaction of the β2-integrin LFA-1 with its ligand intercellular adhesion molecule 1 induces remodeling of T lymphocyte morphology and activation and redistribution of the cytoplasmic tyrosine kinases FAK and PYK-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The leukocyte integrin, lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18), mediates cell adhesion and signaling in inflammatory and immune responses. To support these functions, LFA-1 must convert from a resting to an activated state that avidly binds its ligands such as intercellular adhesion molecule 1 (ICAM-1). Biochemical and x-ray studies of the Mac-1 (CD11b/CD18) I domain suggest that integrin activation could involve a conformational change of the C-terminal α-helix. We report the use of NMR spectroscopy to identify CD11a I domain residues whose resonances are affected by binding to ICAM-1. We observed two distinct sites in the CD11a I domain that were affected. As expected from previous mutagenesis studies, a cluster of residues localized around the metal ion-dependent adhesion site (MIDAS) was severely perturbed on ICAM-1 binding. A second cluster of residues distal to the MIDAS that included the C-terminal α-helix of the CD11a I domain was also affected. Substitution of residues in the core of this second I domain site resulted in constitutively active LFA-1 binding to ICAM-1. Binding data indicates that none of the 20 substitution mutants we tested at this second site form an essential ICAM-1 binding interface. We also demonstrate that residues in the I domain linker sequences can regulate LFA-1 binding. These results indicate that LFA-1 binding to ICAM-1 is regulated by an I domain allosteric site (IDAS) and that this site is structurally linked to the MIDAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EBV-encoded nuclear antigen-1 (EBNA-1) binding to a cis-acting viral DNA element, oriP, enables plasmids to persist in dividing human cells as multicopy episomes that attach to chromosomes during mitosis. In investigating the significance of EBNA-1 binding to mitotic chromosomes, we identified the basic domains of EBNA-1 within amino acids 1–89 and 323–386 as critical for chromosome binding. In contrast, the EBNA-1 C terminus (amino acids 379–641), which includes the nuclear localization signal and DNA-binding domain, does not associate with mitotic chromosomes or retain oriP plasmid DNA in dividing cell nuclei, but does enable the accumulation of replicated oriP-containing plasmid DNA in transient replication assays. The importance of chromosome association in episome maintenance was evaluated by replacing EBNA-1 amino acids 1–378 with cell proteins that have similar chromosome binding characteristics. High-mobility group-I amino acids 1–90 or histone H1–2 could substitute for EBNA-1 amino acids 1–378 in mediating more efficient accumulation of replicated oriP plasmid, association with mitotic chromosomes, nuclear retention, and long-term episome persistence. These data strongly support the hypothesis that mitotic chromosome association is a critical factor for episome maintenance. The replacement of 60% of EBNA-1 with cell protein is a significant step toward eliminating the need for noncellular protein sequences in the maintenance of episomal DNA in human cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During receptor mediated endocytosis, at least a fraction of recycling cargo typically accumulates in a pericentriolar cluster of tubules and vesicles. However, it is not clear if these endosomal structures are biochemically distinct from the early endosomes from which they are derived. To better characterize this pericentriolar endosome population, we determined the distribution of two endogenous proteins known to be functionally involved in receptor recycling [Rab4, cellubrevin (Cbvn)] relative to the distribution of a recycling ligand [transferrin (Tfn)] as it traversed the endocytic pathway. Shortly after internalization, Tfn entered a population of early endosomes that contained both Rab4 and Cbvn, demonstrated by triple label immunofluorescence confocal microscopy. Tfn then accumulated in the pericentriolar cluster of recycling vesicles (RVs). However, although these pericentriolar endosomes contained Cbvn, they were strikingly depleted of Rab4. The ability of internalized Tfn to reach the Rab4-negative population was not blocked by nocodazole, although the characteristic pericentriolar location of the population was not maintained in the absence of microtubules. Similarly, Rab4-positive and -negative populations remained distinct in cells treated with brefeldin A, with only Rab4-positive elements exhibiting the extended tubular morphology induced by the drug. Thus, at least with respect to Rab4 distribution, the pathway of Tfn receptor recycling consists of at least two biochemically and functionally distinct populations of endosomes, a Rab4-positive population of early endosomes to which incoming Tfn is initially delivered and a Rab4-negative population of recycling vesicles that transiently accumulates Tfn on its route back to the plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor beta 1 (TGF beta 1)-null mice die fro complications due to an early-onset multifocal inflammatory disorder. We show here that cardiac cells are hyperproliferative and that intercellular adhesion molecule 1 (ICAM-1) is elevated. To determine which phenotypes are primarily caused by a deficiency in TGF beta 1 from those that are secondary to inflammation, we applied immunosuppressive therapy and genetic combination with the severe combined immunodeficiency (SCID) mutation to inhibit the inflammatory response. Treatment with antibodies to the leukocyte function-associated antigen 1 doubled longevity, reduced inflammation, and delayed heart cell proliferation. TGF beta 1-null SCID mice displayed no inflammation or cardiac cell proliferation, survived to adulthood, and exhibited normal major histocompatibility complex II (MHC II) and ICAM-1 levels. TGF beta 1-null pups born to a TGF beta 1-null SCID mother presented no gross congenital heart defects, indicating that TGF beta 1 alone does not play an essential role in heart development. These results indicate that lymphocytes are essential for the inflammatory response, cardiac cell proliferation, and elevated MHC II and ICAM-1 expression, revealing a vital role for TGF beta 1 in regulating lymphocyte proliferation and activation, which contribute to the maintenance of self tolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatidylinositol 3-kinases (PI 3-kinases) have been implicated in membrane trafficking in the secretory and endocytic pathways of yeast and mammalian cells, but the molecular mechanisms by which these lipid kinases operate are not known. Here we identify a protein of 170 kDa that is rapidly released from cell membranes in response to wortmannin, a potent inhibitor of mammalian PI 3-kinases. The amino acid sequence of peptides from p170 reveal its identity to early endosomal antigen (EEA) 1, an endosomal antigen with homology to several yeast proteins genetically implicated in membrane trafficking. Immunofluorescence analysis of 3T3-L1 adipocytes with antisera against p170/EEA1 reveal a punctate peripheral pattern that becomes diffuse in response to wortmannin. In vitro, p170/EEA1 binds specifically to liposomes containing PIns(3)P, suggesting that the effect of wortmannin on cells is due to inhibition of PIns(3)P production. Thus, p170/EEA1 may define a family of proteins that mediate the regulatory effects of 3′-phosphoinositides on membrane trafficking in yeast and mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective production of monoclonal antibodies (mAbs) reacting with defined cell surface-expressed molecules is now readily accomplished with an immunological subtraction approach, surface-epitope masking (SEM). Using SEM, prostate carcinoma (Pro 1.5) mAbs have been developed that react with tumor-associated antigens expressed on human prostate cancer cell lines and patient-derived carcinomas. Screening a human LNCaP prostate cancer cDNA expression library with the Pro 1.5 mAb identifies a gene, prostate carcinoma tumor antigen-1 (PCTA-1). PCTA-1 encodes a secreted protein of approximately 35 kDa that shares approximately 40% sequence homology with the N-amino terminal region of members of the S-type galactose-binding lectin (galectin) gene family. Specific galectins are found on the surface of human and marine neoplastic cells and have been implicated in tumorigenesis and metastasis. Primer pairs within the 3' untranslated region of PCTA-1 and reverse transcription-PCR demonstrate selective expression of PCTA-1 by prostate carcinomas versus normal prostate and benign prostatic hypertrophy. These findings document the use of the SEM procedure for generating mAbs reacting with tumor-associated antigens expressed on human prostate cancers. The SEM-derived mAbs have been used for expression cloning the gene encoding this human tumor antigen. The approaches described in this paper, SEM combined with expression cloning, should prove of wide utility for developing immunological reagents specific for and identifying genes relevant to human cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TGN38 is one of the few known resident integral membrane proteins of the trans-Golgi network (TGN). Since it cycles constitutively between the TGN and the plasma membrane, TGN38 is ideally suited as a model protein for the identification of post-Golgi trafficking motifs. Several studies, employing chimeric constructs to detect such motifs within the cytosolic domain of TGN38, have identified the sequence 333YQRL336 as an autonomous signal capable of localizing reporter proteins to the TGN. In addition, one group has found that an upstream serine residue, S331, may also play a role in TGN38 localization. However, the nature and degree of participation of S331 in the localization of TGN38 remain uncertain, and the effect has been studied in chimeric constructs only. Here we investigate the role of S331 in the context of full-length TGN38. Mutations that abolish the hydroxyl moiety at position 331 (A, D, and E) lead to missorting of endocytosed TGN38 to the lysosome. Conversely, mutation of S331 to T has little effect on the endocytic trafficking of TGN38. Together, these findings indicate that the S331 hydroxyl group has a direct or indirect effect on the ability of the cytosolic tail of TGN38 to interact with trafficking and/or sorting machinery at the level of the early endosome. In addition, mutation of S331 to either A or D results in increased levels of TGN38 at the cell surface. The results confirm that S331 plays a critical role in the intracellular trafficking of TGN38 and further reveal that TGN38 undergoes a signal-mediated trafficking step at the level of the endosome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell recognition typically involves both the engagement of a specific T cell receptor with a peptide/major histocompatibility complex (MHC) and a number of accessory interactions. One of the most important interactions is between the integrin lymphocyte function-associated antigen 1 (LFA-1) on the T cell and intracellular adhesion molecule 1 (ICAM-1) on an antigen-presenting cell. By using fluorescence video microscopy and an ICAM-1 fused to a green fluorescent protein, we find that the elevation of intracellular calcium in the T cell that is characteristic of activation is followed almost immediately by the rapid accumulation of ICAM-1 on a B cell at a tight interface between the two cells. This increased density of ICAM-1 correlates with the sustained elevation of intracellular calcium in the T cell, known to be critical for activation. The use of peptide/MHC complexes and ICAM-1 on a supported lipid bilayer to stimulate T cells also indicates a major role for ICAM-1/LFA-1 in T cell activation but, surprisingly, not for adhesion, as even in the absence of ICAM-1 the morphological changes and adhesive characteristics of an activated T cell are seen in this system. We suggest that T cell antigen receptor-mediated recognition of a very small number of MHC/peptide complexes could trigger LFA-1/ICAM-1 clustering and avidity regulation, thus amplifying and stabilizing the production of second messengers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver-specific and nonliver-specific methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (AdoMet), the principal biological methyl donor. Mature liver expresses MAT1A, whereas MAT2A is expressed in extrahepatic tissues and is induced during liver growth and dedifferentiation. To examine the influence of MAT1A on hepatic growth, we studied the effects of a targeted disruption of the murine MAT1A gene. MAT1A mRNA and protein levels were absent in homozygous knockout mice. At 3 months, plasma methionine level increased 776% in knockouts. Hepatic AdoMet and glutathione levels were reduced by 74 and 40%, respectively, whereas S-adenosylhomocysteine, methylthioadenosine, and global DNA methylation were unchanged. The body weight of 3-month-old knockout mice was unchanged from wild-type littermates, but the liver weight was increased 40%. The Affymetrix genechip system and Northern and Western blot analyses were used to analyze differential expression of genes. The expression of many acute phase-response and inflammatory markers, including orosomucoid, amyloid, metallothionein, Fas antigen, and growth-related genes, including early growth response 1 and proliferating cell nuclear antigen, is increased in the knockout animal. At 3 months, knockout mice are more susceptible to choline-deficient diet-induced fatty liver. At 8 months, knockout mice developed spontaneous macrovesicular steatosis and predominantly periportal mononuclear cell infiltration. Thus, absence of MAT1A resulted in a liver that is more susceptible to injury, expresses markers of an acute phase response, and displays increased proliferation.