1 resultado para dynamic programming decomposition
em National Center for Biotechnology Information - NCBI
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aston University Research Archive (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (72)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (5)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (178)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (55)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (107)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (14)
- Martin Luther Universitat Halle Wittenberg, Germany (15)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (1)
- QSpace: Queen's University - Canada (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (20)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (41)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (42)
- Scielo Saúde Pública - SP (42)
- Scielo Uruguai (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (15)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (26)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (22)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universita di Parma (2)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (117)
- Université de Montréal (2)
- Université de Montréal, Canada (13)
- University of Connecticut - USA (2)
- University of Michigan (5)
- University of Queensland eSpace - Australia (76)
- University of Southampton, United Kingdom (2)
- University of Washington (3)
Resumo:
We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.