75 resultados para dopamine
em National Center for Biotechnology Information - NCBI
Resumo:
Cocaine and methylphenidate block uptake by neuronal plasma membrane transporters for dopamine, serotonin, and norepinephrine. Cocaine also blocks voltage-gated sodium channels, a property not shared by methylphenidate. Several lines of evidence have suggested that cocaine blockade of the dopamine transporter (DAT), perhaps with additional contributions from serotonin transporter (5-HTT) recognition, was key to its rewarding actions. We now report that knockout mice without DAT and mice without 5-HTT establish cocaine-conditioned place preferences. Each strain displays cocaine-conditioned place preference in this major mouse model for assessing drug reward, while methylphenidate-conditioned place preference is also maintained in DAT knockout mice. These results have substantial implications for understanding cocaine actions and for strategies to produce anticocaine medications.
Resumo:
As a result of alternative splicing, the D2 gene of the dopamine receptor family exists in two isoforms. The D2 long is characterized by the insertion of 29 amino acids in the third cytoplasmic loop, which is absent in the short isoform. We have produced subtype-specific antibodies against both the D2 short and D2 long isoforms and found a unique compartmentalization between these two isoforms in the primate brain. The D2 short predominates in the cell bodies and projection axons of the dopaminergic cell groups of the mesencephalon and hypothalamus, whereas the D2 long is more strongly expressed by neurons in the striatum and nucleus accumbens, structures targeted by dopaminergic fibers. These results show that the splice variants of the dopamine D2 receptor are differentially distributed and possess distinct functions. The strategic localization of the D2 short isoform in dopaminergic cell bodies and axons strongly suggests that this isoform is the likely dopamine autoreceptor, whereas the D2 long isoform is primarily a postsynaptic receptor.
Resumo:
Previous work has shown that glucocorticoid hormones facilitate the behavioral and dopaminergic effects of morphine. In this study we examined the possible role in these effects of the two central corticosteroid receptor types: mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). To accomplish this, specific antagonists of these receptors were infused intracerebroventricularly and 2 hr later we measured: (i) locomotor activity induced by a systemic injection of morphine (2 mg/kg); (ii) locomotor activity induced by an infusion of morphine (1 μg per side) into the ventral tegmental area, which is a dopamine-dependent behavioral response to morphine; (iii) morphine-induced dopamine release in the nucleus accumbens, a dopaminergic projection site mediating the locomotor and reinforcing effects of drugs of abuse. Blockade of MRs by spironolactone had no significant effects on locomotion induced by systemic morphine. In contrast, blockade of GRs by either RU38486 or RU39305, which is devoid of antiprogesterone effects, reduced the locomotor response to morphine, and this effect was dose dependent. GR antagonists also reduced the locomotor response to intraventral tegmental area morphine as well as the basal and morphine-induced increase in accumbens dopamine, as measured by microdialysis in freely moving rats. In contrast, spironolactone did not modify dopamine release. In conclusion, glucocorticoids, via GRs, facilitate the dopamine-dependent behavioral effects of morphine, probably by facilitating dopamine release. The possibility of decreasing the behavioral and dopaminergic effects of opioids by an acute administration of GR antagonists may open new therapeutic strategies for treatment of drug addiction.
Resumo:
Dopamine (DA) inhibition of Na+,K+-ATPase in proximal tubule cells is associated with increased endocytosis of its α and β subunits into early and late endosomes via a clathrin vesicle-dependent pathway. In this report we evaluated intracellular signals that could trigger this mechanism, specifically the role of phosphatidylinositol 3-kinase (PI 3-K), the activation of which initiates vesicular trafficking and targeting of proteins to specific cell compartments. DA stimulated PI 3-K activity in a time- and dose-dependent manner, and this effect was markedly blunted by wortmannin and LY 294002. Endocytosis of the Na+,K+-ATPase α subunit in response to DA was also inhibited in dose-dependent manner by wortmannin and LY 294002. Activation of PI 3-K generally occurs by association with tyrosine kinase receptors. However, in this study immunoprecipitation with a phosphotyrosine antibody did not reveal PI 3-K activity. DA-stimulated endocytosis of Na+,K+-ATPase α subunits required protein kinase C, and the ability of DA to stimulate PI 3-K was blocked by specific protein kinase C inhibitors. Activation of PI 3-K is mediated via the D1 receptor subtype and the sequential activation of phospholipase A2, arachidonic acid, and protein kinase C. The results indicate a key role for activation of PI 3-K in the endocytic sequence that leads to internalization of Na+,K+-ATPase α subunits in response to DA, and suggest a mechanism for the participation of protein kinase C in this process.
Resumo:
Stimulation of dopamine D1 receptors has profound effects on addictive behavior, movement control, and working memory. Many of these functions depend on dopaminergic systems in the striatum and D1–D2 dopamine receptor synergies have been implicated as well. We show here that deletion of the D1 dopamine receptor produces a neural phenotype in which amphetamine and cocaine, two addictive psychomotor stimulants, can no longer stimulate neurons in the striatum to express cFos or JunB or to regulate dynorphin. By contrast, haloperidol, a typical neuroleptic that acts preferentially at D2-class receptors, remains effective in inducing catalepsy and striatal Fos/Jun expression in the D1 mutants, and these behavioral and neural effects can be blocked by D2 dopamine receptor agonists. These findings demonstrate that D2 dopamine receptors can function without the enabling role of D1 receptors but that D1 dopamine receptors are essential for the control of gene expression and motor behavior by psychomotor stimulants.
Resumo:
Dopamine D1, dopamine D2, and adenosine A2A receptors are highly expressed in striatal medium-sized spiny neurons. We have examined, in vivo, the influence of these receptors on the state of phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). DARPP-32 is a potent endogenous inhibitor of protein phosphatase-1, which plays an obligatory role in dopaminergic transmission. A dose-dependent increase in the state of phosphorylation of DARPP-32 occurred in mouse striatum after systemic administration of the D2 receptor antagonist eticlopride (0.1–2.0 mg/kg). This effect was abolished in mice in which the gene coding for the adenosine A2A receptor was disrupted by homologous recombination. A reduction was also observed in mice that had been pretreated with the selective A2A receptor antagonist SCH 58261 (10 mg/kg). The eticlopride-induced increase in DARPP-32 phosphorylation was also decreased by pretreatment with the D1 receptor antagonist SCH 23390 (0.125 and 0.25 mg/kg) and completely reversed by combined pretreatment with SCH 23390 (0.25 mg/kg) plus SCH 58261 (10 mg/kg). SCH 23390, but not SCH 58261, abolished the increase in DARPP-32 caused by cocaine (15 mg/kg). The results indicate that, in vivo, the state of phosphorylation of DARPP-32 and, by implication, the activity of protein phosphatase-1 are regulated by tonic activation of D1, D2, and A2A receptors. The results also underscore the fact that the adenosine system plays a role in the generation of responses to dopamine D2 antagonists in vivo.
Resumo:
We investigated the circadian function of Drosophila dopamine receptors by using a behaviorally active decapitated preparation that allows for direct application of drugs to the nerve cord. Quinpirole, a D2-like dopamine receptor agonist, induces reflexive locomotion in decapitated flies. We show that the amount of locomotion induced changes as a function of the time of day, with the highest responsiveness to quinpirole during the subjective night. Furthermore, dopamine receptor responsiveness is under circadian control and depends on the normal function of the period gene. The head pacemaker is at least partly dispensable for the circadian modulation of quinpirole-induced locomotion, because changes in agonist responsiveness persist in decapitated flies that are aged for 12 h. This finding suggests a role for the period-dependent molecular oscillators in the body in the modulation of amine receptor responsiveness.
Resumo:
In vivo, G protein-coupled receptors (GPCR) for neurotransmitters undergo complex intracellular trafficking that contribute to regulate their abundance at the cell surface. Here, we report a previously undescribed alteration in the subcellular localization of D1 dopamine receptor (D1R) that occurs in vivo in striatal dopaminoceptive neurons in response to chronic and constitutive hyperdopaminergia. Indeed, in mice lacking the dopamine transporter, D1R is in abnormally low abundance at the plasma membrane of cell bodies and dendrites and is largely accumulated in rough endoplasmic reticulum and Golgi apparatus. Decrease of striatal extracellular dopamine concentration with 6-hydroxydopamine (6- OHDA) in heterozygous mice restores delivery of the receptor from the cytoplasm to the plasma membrane in cell bodies. These results demonstrate that, in vivo, in the central nervous system, the storage in cytoplasmic compartments involved in synthesis and the membrane delivery contribute to regulate GPCR availability and abundance at the surface of the neurons under control of the neurotransmitter tone. Such regulation may contribute to modulate receptivity of neurons to their endogenous ligands and related exogenous drugs.
Resumo:
Norepinephrine, released from sympathetic neurons, and epinephrine, released from the adrenal medulla, participate in a number of physiological processes including those that facilitate adaptation to stressful conditions. The thymus, spleen, and lymph nodes are richly innervated by the sympathetic nervous system, and catecholamines are thought to modulate the immune response. However, the importance of this modulatory role in vivo remains uncertain. We addressed this question genetically by using mice that lack dopamine β-hydroxylase (dbh−/− mice). dbh−/− mice cannot produce norepinephrine or epinephrine, but produce dopamine instead. When housed in specific pathogen-free conditions, dbh−/− mice had normal numbers of blood leukocytes, and normal T and B cell development and in vitro function. However, when challenged in vivo by infection with the intracellular pathogens Listeria monocytogenes or Mycobacterium tuberculosis, dbh−/− mice were more susceptible to infection, exhibited extreme thymic involution, and had impaired T cell function, including Th1 cytokine production. When immunized with trinitrophenyl-keyhole limpet hemocyanin, dbh−/− mice produced less Th1 cytokine-dependent-IgG2a antitrinitrophenyl antibody. These results indicate that physiological catecholamine production is not required for normal development of the immune system, but plays an important role in the modulation of T cell-mediated immunity to infection and immunization.
Resumo:
The γ-aminobutyric acid type A (GABAA) receptor is the predominant Cl− channel protein mediating inhibition in the olfactory bulb and elsewhere in the mammalian brain. The olfactory bulb is rich in neurons containing both GABA and dopamine. Dopamine D1 and D2 receptors are also highly expressed in this brain region with a distinct and complementary distribution pattern. This distribution suggests that dopamine may control the GABAergic inhibitory processing of odor signals, possibly via different signal-transduction mechanisms. We have observed that GABAA receptors in the rat olfactory bulb are differentially modulated by dopamine in a cell-specific manner. Dopamine reduced the currents through GABA-gated Cl- channels in the interneurons, presumably granule cells. This action was mediated via D1 receptors and involved phosphorylation of GABAA receptors by protein kinase A. Enhancement of GABA responses via activation of D2 dopamine receptors and phosphorylation of GABAA receptors by protein kinase C was observed in mitral/tufted cells. Decreasing or increasing the binding affinity for GABA appears to underlie the modulatory effects of dopamine via distinct receptor subtypes. This dual action of dopamine on inhibitory GABAA receptor function in the rat olfactory bulb could be instrumental in odor detection and discrimination, olfactory learning, and ultimately odotopic memory formation.
Resumo:
The possible molecular basis for the previously described antagonistic interactions between adenosine A1 receptors (A1R) and dopamine D1 receptors (D1R) in the brain have been studied in mouse fibroblast Ltk− cells cotransfected with human A1R and D1R cDNAs or with human A1R and dopamine D2 receptor (long-form) (D2R) cDNAs and in cortical neurons in culture. A1R and D1R, but not A1R and D2R, were found to coimmunoprecipitate in cotransfected fibroblasts. This selective A1R/D1R heteromerization disappeared after pretreatment with the D1R agonist, but not after combined pretreatment with D1R and A1R agonists. A high degree of A1R and D1R colocalization, demonstrated in double immunofluorescence experiments with confocal laser microscopy, was found in both cotransfected fibroblast cells and cortical neurons in culture. On the other hand, a low degree of A1R and D2R colocalization was observed in cotransfected fibroblasts. Pretreatment with the A1R agonist caused coclustering (coaggregation) of A1R and D1R, which was blocked by combined pretreatment with the D1R and A1R agonists in both fibroblast cells and in cortical neurons in culture. Combined pretreatment with D1R and A1R agonists, but not with either one alone, substantially reduced the D1R agonist-induced accumulation of cAMP. The A1R/D1R heteromerization may be one molecular basis for the demonstrated antagonistic modulation of A1R of D1R receptor signaling in the brain. The persistence of A1R/D1R heteromerization seems to be essential for the blockade of A1R agonist-induced A1R/D1R coclustering and for the desensitization of the D1R agonist-induced cAMP accumulation seen on combined pretreatment with D1R and A1R agonists, which indicates a potential role of A1R/D1R heteromers also in desensitization mechanisms and receptor trafficking.
Resumo:
Typical neuroleptic drugs elicit their antipsychotic effects mainly by acting as antagonists at dopamine D2 receptors. Much of this activity is thought to occur in the cerebral cortex, where D2 receptors are found largely in inhibitory GABAergic neurons. Here we confirm this localization at the electron microscopic level, but additionally show that a subset of cortical interneurons with low or undetectable expression of D2 receptor isoforms are surrounded by astrocytic processes that strongly express D2 receptors. Ligand binding of isolated astrocyte preparations indicate that cortical astroglia account for approximately one-third of the total D2 receptor binding sites in the cortex, a proportion that we found conserved among rodent, monkey, and human tissues. Further, we show that the D2 receptor-specific agonist, quinpirole, can induce Ca2+ elevation in isolated cortical astrocytes in a pharmacologically reversible manner, thus implicating this receptor in the signaling mechanisms by which astrocytes communicate with each other as well as with neurons. The discovery of D2 receptors in astrocytes with a selective anatomical relationship to interneurons represents a neuron/glia substrate for cortical dopamine action in the adult cerebral cortex and a previously unrecognized site of action for antipsychotic drugs with affinities at the D2 receptor.
Resumo:
The A2AR is largely coexpressed with D2Rs and enkephalin mRNA in the striatum where it modulates dopaminergic activity. Activation of the A2AR antagonizes D2R-mediated behavioral and neurochemical effects in the basal ganglia through a mechanism that may involve direct A2AR–D2R interaction. However, whether the D2R is required for the A2AR to exert its neural function is an open question. In this study, we examined the role of D2Rs in A2AR-induced behavioral and cellular responses, by using genetic knockout (KO) models (mice deficient in A2ARs or D2Rs or both). Behavioral analysis shows that the A2AR agonist 2–4-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine reduced spontaneous as well as amphetamine-induced locomotion in both D2 KO and wild-type mice. Conversely, the nonselective adenosine antagonist caffeine and the A2AR antagonist 8-(3-chlorostyryl)caffeine produced motor stimulation in mice lacking the D2R, although the stimulation was significantly attentuated. At the cellular level, A2AR inactivation counteracted the increase in enkephalin expression in striatopallidal neurons caused by D2R deficiency. Consistent with the D2 KO phenotype, A2AR inactivation partially reversed both acute D2R antagonist (haloperidol)-induced catalepsy and chronic haloperidol-induced enkephalin mRNA expression. Together, these results demonstrate that A2ARs elicit behavioral and cellular responses despite either the genetic deficiency or pharmacological blockade of D2Rs. Thus, A2AR-mediated neural functions are partially independent of D2Rs. Moreover, endogenous adenosine acting at striatal A2ARs may be most accurately viewed as a facilitative modulator of striatal neuronal activity rather than simply as an inhibitory modulator of D2R neurotransmission.
Resumo:
We reported previously that Go-deficient mice develop severe neurological defects that include hyperalgesia, a generalized tremor, lack of coordination, and a turning syndrome somewhat reminiscent of unilateral lesions of the dopaminergic nigro-striatal pathway. By using frozen coronal sections of serially sectioned brains of normal and Go-deficient mice, we studied the ability of several G protein coupled receptors to promote binding of GTPγS to G proteins and the ability of GTP to promote a shift in the affinity of D2 dopamine receptor for its physiologic agonist dopamine. We found a generalized, but not abolished reduction in agonist-stimulated binding of GTPγS to frozen brain sections, with no significant left–right differences. Unexpectedly, the ability of GTP to regulate the binding affinity of dopamine to D2 receptors (as seen in in situ [35S]sulpiride displacement curves) that was robust in control mice, was absent in Go-deficient mice. The data suggest that most of the effects of the Gi/Go-coupled D2 receptors in the central nervous system are mediated by Go instead of Gi1, Gi2, or Gi3. In agreement with this, the effect of GTP on dopamine binding to D2 receptors in double Gi1 plus Gi2- and Gi1 plus Gi3-deficient mice was essentially unaffected.