3 resultados para dominant position abuse
em National Center for Biotechnology Information - NCBI
Resumo:
ATP-sensitive K+ (KATP) channels are known to play important roles in various cellular functions, but the direct consequences of disruption of KATP channel function are largely unknown. We have generated transgenic mice expressing a dominant-negative form of the KATP channel subunit Kir6.2 (Kir6.2G132S, substitution of glycine with serine at position 132) in pancreatic beta cells. Kir6.2G132S transgenic mice develop hypoglycemia with hyperinsulinemia in neonates and hyperglycemia with hypoinsulinemia and decreased beta cell population in adults. KATP channel function is found to be impaired in the beta cells of transgenic mice with hyperglycemia. In addition, both resting membrane potential and basal calcium concentrations are shown to be significantly elevated in the beta cells of transgenic mice. We also found a high frequency of apoptotic beta cells before the appearance of hyperglycemia in the transgenic mice, suggesting that the KATP channel might play a significant role in beta cell survival in addition to its role in the regulation of insulin secretion.
Resumo:
α-Fetoprotein (AFP) transcription is activated early in hepatogenesis, but is dramatically repressed within several weeks after birth. AFP regulation is governed by multiple elements including three enhancers termed EI, EII, and EIII. All three AFP enhancers continue to be active in the adult liver, where EI and EII exhibit high levels of activity in pericentral hepatocytes with a gradual reduction in activity in a pericentral-periportal direction. In contrast to these two enhancers, EIII activity is highly restricted to a layer of cells surrounding the central veins. To test models that could account for position-dependent EIII activity in the adult liver, we have analyzed transgenes in which AFP enhancers EII and EIII were linked together. Our results indicate that the activity of EIII is dominant over that of EII, indicating that EIII is a potent negative regulatory element in all hepatocytes except those encircling the central veins. We have localized this negative activity to a 340-bp fragment. This suggests that enhancer III may be involved in postnatal AFP repression.
Resumo:
At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging.