32 resultados para domaine senseur de voltage

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-dependent and calcium-sensitive K+ (MaxiK) channels are key regulators of neuronal excitability, secretion, and vascular tone because of their ability to sense transmembrane voltage and intracellular Ca2+. In most tissues, their stimulation results in a noninactivating hyperpolarizing K+ current that reduces excitability. In addition to noninactivating MaxiK currents, an inactivating MaxiK channel phenotype is found in cells like chromaffin cells and hippocampal neurons. The molecular determinants underlying inactivating MaxiK channels remain unknown. Herein, we report a transmembrane β subunit (β2) that yields inactivating MaxiK currents on coexpression with the pore-forming α subunit of MaxiK channels. Intracellular application of trypsin as well as deletion of 19 N-terminal amino acids of the β2 subunit abolished inactivation of the α subunit. Conversely, fusion of these N-terminal amino acids to the noninactivating smooth muscle β1 subunit leads to an inactivating phenotype of MaxiK channels. Furthermore, addition of a synthetic N-terminal peptide of the β2 subunit causes inactivation of the MaxiK channel α subunit by occluding its K+-conducting pore resembling the inactivation caused by the “ball” peptide in voltage-dependent K+ channels. Thus, the inactivating phenotype of MaxiK channels in native tissues can result from the association with different β subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In higher plants changes and oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) are central to hormonal physiology, including that of abscisic acid (ABA), which signals conditions of water stress and alters ion channel activities in guard cells of higher-plant leaves. Such changes in [Ca2+]i are thought to encode for cellular responses to different stimuli, but their origins and functions are poorly understood. Because transients and oscillations in membrane voltage also occur in guard cells and are elicited by hormones, including ABA, we suspected a coupling of [Ca2+]i to voltage and its interaction with ABA. We recorded [Ca2+]i by Fura2 fluorescence ratio imaging and photometry while bringing membrane voltage under experimental control with a two-electrode voltage clamp in intact Vicia guard cells. Free-running oscillations between voltages near −50 mV and −200 mV were associated with oscillations in [Ca2+]i, and, under voltage clamp, equivalent membrane hyperpolarizations caused [Ca2+]i to increase, often in excess of 1 μM, from resting values near 100 nM. Image analysis showed that the voltage stimulus evoked a wave of high [Ca2+]i that spread centripetally from the peripheral cytoplasm within 5–10 s and relaxed over 40–60 s thereafter. The [Ca2+]i increases showed a voltage threshold near −120 mV and were sensitive to external Ca2+ concentration. Substituting Mn2+ for Ca2+ to quench Fura2 fluorescence showed that membrane hyperpolarization triggered a divalent influx. ABA affected the voltage threshold for the [Ca2+]i rise, its amplitude, and its duration. In turn, membrane voltage determined the ability of ABA to raise [Ca2+]i. These results demonstrate a capacity for voltage to evoke [Ca2+]i increases, they point to a dual interaction with ABA in triggering and propagating [Ca2+]i increases, and they implicate a role for voltage in “conditioning” [Ca2+]i signals that regulate ion channels for stomatal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coincidence detection is important for functions as diverse as Hebbian learning, binaural localization, and visual attention. We show here that extremely precise coincidence detection is a natural consequence of the normal function of rectifying electrical synapses. Such synapses open to bidirectional current flow when presynaptic cells depolarize relative to their postsynaptic targets and remain open until well after completion of presynaptic spikes. When multiple input neurons fire simultaneously, the synaptic currents sum effectively and produce a large excitatory postsynaptic potential. However, when some inputs are delayed relative to the rest, their contributions are reduced because the early excitatory postsynaptic potential retards the opening of additional voltage-sensitive synapses, and the late synaptic currents are shunted by already opened junctions. These mechanisms account for the ability of the lateral giant neurons of crayfish to sum synchronous inputs, but not inputs separated by only 100 μsec. This coincidence detection enables crayfish to produce reflex escape responses only to very abrupt mechanical stimuli. In light of recent evidence that electrical synapses are common in the mammalian central nervous system, the mechanisms of coincidence detection described here may be widely used in many systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applying a brief repolarizing pre-pulse to a depolarized frog skeletal muscle fiber restores a small fraction of the transverse tubule membrane voltage sensors from the inactivated state. During a subsequent depolarizing test pulse we detected brief, highly localized elevations of myoplasmic Ca2+ concentration (Ca2+ “sparks”) initiated by restored voltage sensors in individual triads at all test pulse voltages. The latency histogram of these events gives the gating pattern of the sarcoplasmic reticulum (SR) calcium release channels controlled by the restored voltage sensors. Both event frequency and clustering of events near the start of the test pulse increase with test pulse depolarization. The macroscopic SR calcium release waveform, obtained from the spark latency histogram and the estimated open time of the channel or channels underlying a spark, exhibits an early peak and rapid marked decline during large depolarizations. For smaller depolarizations, the release waveform exhibits a smaller peak and a slower decline. However, the mean use time and mean amplitude of the individual sparks are quite similar at all test depolarizations and at all times during a given depolarization, indicating that the channel open times and conductances underlying sparks are essentially independent of voltage. Thus, the voltage dependence of SR Ca2+ release is due to changes in the frequency and pattern of occurrence of individual, voltage-independent, discrete release events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transporters for the biogenic amines dopamine, norepinephrine, epinephrine and serotonin are largely responsible for transmitter inactivation after release. They also serve as high-affinity targets for a number of clinically relevant psychoactive agents, including antidepressants, cocaine, and amphetamines. Despite their prominent role in neurotransmitter inactivation and drug responses, we lack a clear understanding of the permeation pathway or regulation mechanisms at the single transporter level. The resolution of radiotracer-based flux techniques limits the opportunities to dissect these problems. Here we combine patch-clamp recording techniques with microamperometry to record the transporter-mediated flux of norepinephrine across isolated membrane patches. These data reveal voltage-dependent norepinephrine flux that correlates temporally with antidepressant-sensitive transporter currents in the same patch. Furthermore, we resolve unitary flux events linked with bursts of transporter channel openings. These findings indicate that norepinephrine transporters are capable of transporting neurotransmitter across the membrane in discrete shots containing hundreds of molecules. Amperometry is used widely to study neurotransmitter distribution and kinetics in the nervous system and to detect transmitter release during vesicular exocytosis. Of interest regarding the present application is the use of amperometry on inside-out patches with synchronous recording of flux and current. Thus, our results further demonstrate a powerful method to assess transporter function and regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The n-type K+ channel (n-K+, Kv1.3) in lymphocytes has been recently implicated in the regulation of Fas-induced programmed cell death. Here, we demonstrate that ceramide, a lipid metabolite synthesized upon Fas receptor ligation, inhibits n-K+ channel activity and induces a tyrosine phosphorylation of the Kv1.3 protein in Jurkat T lymphocytes. Tyrosine phosphorylation of the n-K+ channel correlated with an activation of the Src-like tyrosine kinase p56lck upon cellular treatment with the ceramide analog C6-ceramide. Because genetic deficiency of p56lck or inhibition of Src-like tyrosine kinases by herbimycin A prevented ceramide-mediated n-K+ channel inhibition and tyrosine phosphorylation, we propose a ceramide-initiated activation of p56lck resulting in tyrosine phosphorylation and inhibition of the n-K+ channel protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many blockers of Na+ and K+ channels act by blocking the pore from the intracellular side. For Shaker K+ channels, such intracellular blockers vary in their functional effect on slow (C-type) inactivation: Some blockers interfere with C-type inactivation, whereas others do not. These functional differences can be explained by supposing that there are two overlapping “subsites” for blocker binding, only one of which inhibits C-type inactivation through an allosteric effect. We find that the ability to bind to these subsites depends on specific structural characteristics of the blockers, and correlates with the effect of mutations in two distinct regions of the channel protein. These interactions are important because they affect the ability of blockers to produce use-dependent inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretion of neurotransmitters is initiated by voltage-gated calcium influx through presynaptic, voltage-gated N-type calcium channels. These channels interact with the SNARE proteins, which are core components of the exocytosis process, via the synaptic protein interaction (synprint) site in the intracellular loop connecting domains II and III of their α1B subunit. Interruption of this interaction by competing synprint peptides inhibits fast, synchronous transmitter release. Here we identify a voltage-dependent, but calcium-independent, enhancement of transmitter release that is elicited by trains of action potentials in the presence of a hyperosmotic extracellular concentration of sucrose. This enhancement of transmitter release requires interaction of SNARE proteins with the synprint site. Our results provide evidence for a voltage-dependent signal that is transmitted by protein–protein interactions from the N-type calcium channel to the SNARE proteins and enhances neurotransmitter release by altering SNARE protein function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The patch-clamp technique allows currents to be recorded through single ion channels in patches of cell membrane in the tips of glass pipettes. When recording, voltage is typically applied across the membrane patch to drive ions through open channels and to probe the voltage-sensitivity of channel activity. In this study, we used video microscopy and single-channel recording to show that prolonged depolarization of a membrane patch in borosilicate pipettes results in delayed slow displacement of the membrane into the pipette and that this displacement is associated with the activation of mechanosensitive (MS) channels in the same patch. The membrane displacement, ≈1 μm with each prolonged depolarization, occurs after variable delays ranging from tens of milliseconds to many seconds and is correlated in time with activation of MS channels. Increasing the voltage step shortens both the delay to membrane displacement and the delay to activation. Preventing depolarization-induced membrane displacement by applying positive pressure to the shank of the pipette or by coating the tips of the borosilicate pipettes with soft glass prevents the depolarization-induced activation of MS channels. The correlation between depolarization-induced membrane displacement and activation of MS channels indicates that the membrane displacement is associated with sufficient membrane tension to activate MS channels. Because membrane tension can modulate the activity of various ligand and voltage-activated ion channels as well as some transporters, an apparent voltage dependence of a channel or transporter in a membrane patch in a borosilicate pipette may result from voltage-induced tension rather than from direct modulation by voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large conductance calcium- and voltage-sensitive K+ (MaxiK) channels share properties of voltage- and ligand-gated ion channels. In voltage-gated channels, membrane depolarization promotes the displacement of charged residues contained in the voltage sensor (S4 region) inducing gating currents and pore opening. In MaxiK channels, both voltage and micromolar internal Ca2+ favor pore opening. We demonstrate the presence of voltage sensor rearrangements with voltage (gating currents) whose movement and associated pore opening is triggered by voltage and facilitated by micromolar internal Ca2+ concentration. In contrast to other voltage-gated channels, in MaxiK channels there is charge movement at potentials where the pore is open and the total charge per channel is 4–5 elementary charges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The voltage-gated sodium channel is the site of action of more than six classes of neurotoxins and drugs that alter its function by interaction with distinct, allosterically coupled receptor sites. Batrachotoxin (BTX) is a steroidal alkaloid that binds to neurotoxin receptor site 2 and causes persistent activation. BTX binding is inhibited allosterically by local anesthetics. We have investigated the interaction of BTX with amino acid residues I1760, F1764, and Y1771, which form part of local anesthetic receptor site in transmembrane segment IVS6 of type IIA sodium channels. Alanine substitution for F1764 (mutant F1764A) reduces tritiated BTX-A-20-α-benzoate binding affinity, causing a 60-fold increase in Kd. Alanine substitution for I1760, which is adjacent to F1764 in the predicted IVS6 transmembrane alpha helix, causes only a 4-fold increase in Kd. In contrast, mutant Y1771A shows no change in BTX binding affinity. For wild-type and mutant Y1771A, BTX shifted the voltage for half-maximal activation ≈40 mV in the hyperpolarizing direction and increased the percentage of noninactivating sodium current to ≈60%. In contrast, these BTX effects were eliminated completely for the F1764A mutant and were reduced substantially for mutant I1760A. Our data suggest that the BTX receptor site shares overlapping but nonidentical molecular determinants with the local anesthetic receptor site in transmembrane segment IVS6 as well as having unique molecular determinants in transmembrane segment IS6, as demonstrated in previous work. Evidently, BTX conforms to a domain–interface allosteric model of ligand binding and action, as previously proposed for calcium agonist and antagonist drugs acting on l-type calcium channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The voltage-gated Ca2+ channels that effect tonic release of neurotransmitter from hair cells have unusual pharmacological properties: unlike most presynaptic Ca2+ channels, they are sensitive to dihydropyridines and therefore are L-type. To characterize these Ca2+ channels, we investigated the expression of L-type α1 subunits in hair cells of the chicken’s cochlea. In PCRs with five different pairs of degenerate primers, we always obtained α1D products, but only once an α1C product and never an α1S product. A full-length α1D mRNA sequence was assembled from overlapping PCR products; the predicted amino acid sequence of the α1D subunit was about 90% identical to those of the mammalian α1D subunits. In situ hybridization confirmed that the α1D mRNA is present in hair cells. By using a quantitative PCR assay, we determined that the α1D mRNA is 100–500 times more abundant than the α1C mRNA. We conclude that most, if not all, voltage-gated Ca2+ channels in hair cells contain an α1D subunit. Furthermore, we propose that the α1D subunit plays a hitherto undocumented role at tonic synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The L-type voltage-gated Ca2+ channels that control tonic release of neurotransmitter from hair cells exhibit unusual electrophysiological properties: a low activation threshold, rapid activation and deactivation, and a lack of Ca2+-dependent inactivation. We have inquired whether these characteristics result from cell-specific splicing of the mRNA for the L-type α1D subunit that predominates in hair cells of the chicken’s cochlea. The α1D subunit in hair cells contains three uncommon exons: one encoding a 26-aa insert in the cytoplasmic loop between repeats I and II, an alternative exon for transmembrane segment IIIS2, and a heretofore undescribed exon specifying a 10-aa insert in the cytoplasmic loop between segments IVS2 and IVS3. We propose that the alternative splicing of the α1D mRNA contributes to the unusual behavior of the hair cell’s voltage-gated Ca2+ channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spindle pole body (SPB) is the major microtubule-organizing center of budding yeast and is the functional equivalent of the centrosome in higher eukaryotic cells. We used fast-frozen, freeze-substituted cells in conjunction with high-voltage electron tomography to study the fine structure of the SPB and the events of early spindle formation. Individual structures were imaged at 5–10 nm resolution in three dimensions, significantly better than can be achieved by serial section electron microscopy. The SPB is organized in distinct but coupled layers, two of which show ordered two-dimensional packing. The SPB central plaque is anchored in the nuclear envelope with hook-like structures. The minus ends of nuclear microtubules (MTs) are capped and are tethered to the SPB inner plaque, whereas the majority of MT plus ends show a distinct flaring. Unbudded cells containing a single SPB retain 16 MTs, enough to attach to each of the expected 16 chromosomes. Their median length is ∼150 nm. MTs growing from duplicated but not separated SPBs have a median length of ∼130 nm and interdigitate over the bridge that connects the SPBs. As a bipolar spindle is formed, the median MT length increases to ∼300 nm and then decreases to ∼30 nm in late anaphase. Three-dimensional models confirm that there is no conventional metaphase and that anaphase A occurs. These studies complement and extend what is known about the three-dimensional structure of the yeast mitotic spindle and further our understanding of the organization of the SPB in intact cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large conductance voltage and Ca2+-activated K+ (MaxiK) channels couple intracellular Ca2+ with cellular excitability. They are composed of a pore-forming α subunit and modulatory β subunits. The pore blockers charybdotoxin (CTx) and iberiotoxin (IbTx), at nanomolar concentrations, have been invaluable in unraveling MaxiK channel physiological role in vertebrates. However in mammalian brain, CTx-insensitive MaxiK channels have been described [Reinhart, P. H., Chung, S. & Levitan, I. B. (1989) Neuron 2, 1031–1041], but their molecular basis is unknown. Here we report a human MaxiK channel β-subunit (β4), highly expressed in brain, which renders the MaxiK channel α-subunit resistant to nanomolar concentrations of CTx and IbTx. The resistance of MaxiK channel to toxin block, a phenotype conferred by the β4 extracellular loop, results from a dramatic (≈1,000 fold) slowdown of the toxin association. However once bound, the toxin block is apparently irreversible. Thus, unusually high toxin concentrations and long exposure times are necessary to determine the role of “CTx/IbTx-insensitive” MaxiK channels formed by α + β4 subunits.