3 resultados para diurnal surface currents
em National Center for Biotechnology Information - NCBI
Resumo:
Distinct subtypes of glutamate receptors often are colocalized at individual excitatory synapses in the mammalian brain yet appear to subserve distinct functions. To address whether neuronal activity may differentially regulate the surface expression at synapses of two specific subtypes of ionotropic glutamate receptors we epitope-tagged an AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor subunit (GluR1) and an NMDA (N-methyl-d-aspartate) receptor subunit (NR1) on their extracellular termini and expressed these proteins in cultured hippocampal neurons using recombinant adenoviruses. Both receptor subtypes were appropriately targeted to the synaptic plasma membrane as defined by colocalization with the synaptic vesicle protein synaptophysin. Increasing activity in the network of cultured cells by prolonged blockade of inhibitory synapses with the γ-aminobutyric acid type A receptor antagonist picrotoxin caused an activity-dependent and NMDA receptor-dependent decrease in surface expression of GluR1, but not NR1, at synapses. Consistent with this observation identical treatment of noninfected cultures decreased the contribution of endogenous AMPA receptors to synaptic currents relative to endogenous NMDA receptors. These results indicate that neuronal activity can differentially regulate the surface expression of AMPA and NMDA receptors at individual synapses.
Insulin promotes rapid delivery of N-methyl-d- aspartate receptors to the cell surface by exocytosis
Resumo:
Insulin potentiates N-methyl-d-aspartate receptors (NMDARs) in neurons and Xenopus oocytes expressing recombinant NMDARs. The present study shows that insulin induced (i) an increase in channel number times open probability (nPo) in outside-out patches excised from Xenopus oocytes, with no change in mean open time, unitary conductance, or reversal potential, indicating an increase in n and/or Po; (ii) an increase in charge transfer during block of NMDA-elicited currents by the open channel blocker MK-801, indicating increased number of functional NMDARs in the cell membrane with no change in Po; and (iii) increased NR1 surface expression, as indicated by Western blot analysis of surface proteins. Botulinum neurotoxin A greatly reduced insulin potentiation, indicating that insertion of new receptors occurs via SNARE-dependent exocytosis. Thus, insulin potentiation occurs via delivery of new channels to the plasma membrane. NMDARs assembled from mutant subunits lacking all known sites of tyrosine and serine/threonine phosphorylation in their carboxyl-terminal tails exhibited robust insulin potentiation, suggesting that insulin potentiation does not require direct phosphorylation of NMDAR subunits. Because insulin and insulin receptors are localized to glutamatergic synapses in the hippocampus, insulin-regulated trafficking of NMDARs may play a role in synaptic transmission and plasticity, including long-term potentiation.
Resumo:
We demonstrate that in situ optical surface plasmon resonance spectroscopy can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The dc field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered single-stranded DNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential-induced changes in the shape of the surface plasmon resonance curve, we account for the full curve rather than simply the shift in the resonance minimum.