2 resultados para discount rate heterogeneity
em National Center for Biotechnology Information - NCBI
Resumo:
It has long been known that rearrangements of chromosomes through breakage-fusion-bridge (BFB) cycles may cause variability of phenotypic and genetic traits within a cell population. Because intercellular heterogeneity is often found in neoplastic tissues, we investigated the occurrence of BFB events in human solid tumors. Evidence of frequent BFB events was found in malignancies that showed unspecific chromosome aberrations, including ring chromosomes, dicentric chromosomes, and telomeric associations, as well as extensive intratumor heterogeneity in the pattern of structural changes but not in tumors with tumor-specific aberrations and low variability. Fluorescence in situ hybridization analysis demonstrated that chromosomes participating in anaphase bridge formation were involved in a significantly higher number of structural aberrations than other chromosomes. Tumors with BFB events showed a decreased elimination rate of unstable chromosome aberrations after irradiation compared with normal cells and other tumor cells. This result suggests that a combination of mitotically unstable chromosomes and an elevated tolerance to chromosomal damage leads to constant genomic reorganization in many malignancies, thereby providing a flexible genetic system for clonal evolution and progression.
Resumo:
The C32 isogenic homozygous diploid (IHD) strain of the zebrafish (Danio rerio) was found to be polyallelic at a malate dehydrogenase locus (sMdh-A). A variant allele is thought to have arisen via mutation within the past 10 bisexual generations that have maintained the strain since its last gynogenetic cloning event; this unique allele now predominates at the sMdh-A locus. The estimated mutation rate in this species is sufficiently high that long-term genetic homogeneity of its IHD clones cannot be assumed. Researchers using such bisexually maintained clones should be aware that they are not necessarily using genetically uniform subjects. Genetic uniformity of cloned IHD zebrafish will be maximized if experimental subjects are obtained soon after a cloning event.