3 resultados para diffractive methodology,

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed an extremely sensitive technique, termed immuno-detection amplified by T7 RNA polymerase (IDAT) that is capable of monitoring proteins, lipids, and metabolites and their modifications at the single-cell level. A double-stranded oligonucleotide containing the T7 promoter is conjugated to an antibody (Ab), and then T7 RNA polymerase is used to amplify RNA from the double-stranded oligonucleotides coupled to the Ab in the Ab-antigen complex. By using this technique, we are able to detect the p185her2/neu receptor from the crude lysate of T6–17 cells at 10−13 dilution, which is 109-fold more sensitive than the conventional ELISA method. Single-chain Fv fragments or complementarity determining region peptides of the Ab also can be substituted for the Ab in IDAT. In a modified protocol, the oligonucleotide has been coupled to an Ab against a common epitope to create a universal detector species. With the linear amplification ability of T7 RNA polymerase, IDAT represents a significant improvement over immuno-PCR in terms of sensitivity and has the potential to provide a robotic platform for proteomics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligand transport through myoglobin (Mb) has been observed by using optically heterodyne-detected transient grating spectroscopy. Experimental implementation using diffractive optics has provided unprecedented sensitivity for the study of protein motions by enabling the passive phase locking of the four beams that constitute the experiment, and an unambiguous separation of the Real and Imaginary parts of the signal. Ligand photodissociation of carboxymyoglobin (MbCO) induces a sequence of events involving the relaxation of the protein structure to accommodate ligand escape. These motions show up in the Real part of the signal. The ligand (CO) transport process involves an initial, small amplitude, change in volume, reflecting the transit time of the ligand through the protein, followed by a significantly larger volume change with ligand escape to the surrounding water. The latter process is well described by a single exponential process of 725 ± 15 ns at room temperature. The overall dynamics provide a distinctive signature that can be understood in the context of segmental protein fluctuations that aid ligand escape via a few specific cavities, and they suggest the existence of discrete escape pathways.