87 resultados para differential expression

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protective/suppressive major histocompatibility complex (MHC) class II alleles have been identified in humans and mice where they exert a disease-protective and immunosuppressive effect. Various modes of action have been proposed, among them differential expression of MHC class II genes in different types of antigen-presenting cells impacting on the T helper type 1 (Th1)–Th2 balance. To test this possibility, the expression of H-2 molecules from the four haplotypes H-2b, H-2d, H-2k, and H-2q was determined on bone marrow-derived macrophages (BMDMs) and splenic B cells. The I-Ab and I-Ek molecules, both well characterized as protective/suppressive, are expressed at a high level on almost all CD11b+ BMDMs for 5–8 days, after which expression slowly declines. In contrast, I-Ad, I-Ak, and I-Aq expression is lower, peaks over a shorter period, and declines more rapidly. No differential expression could be detected on B cells. In addition, the differential MHC class II expression found on macrophages skews the cytokine response of T cells as shown by an in vitro restimulation assay with BMDMs as antigen-presenting cells. The results indicate that macrophages of the protective/suppressive haplotypes express MHC class II molecules at a high level and exert Th1 bias, whereas low-level expression favors a Th2 response. We suggest that the extent of expression of the class II gene gates the back signal from T cells and in this way controls the activity of macrophages. This effect mediated by polymorphic nonexon segments of MHC class II genes may play a role in determining disease susceptibility in humans and mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore the role of nonmuscle myosin II isoforms during mouse gametogenesis, fertilization, and early development, localization and microinjection studies were performed using monospecific antibodies to myosin IIA and IIB isotypes. Each myosin II antibody recognizes a 205-kDa protein in oocytes, but not mature sperm. Myosin IIA and IIB demonstrate differential expression during meiotic maturation and following fertilization: only the IIA isoform detects metaphase spindles or accumulates in the mitotic cleavage furrow. In the unfertilized oocyte, both myosin isoforms are polarized in the cortex directly overlying the metaphase-arrested second meiotic spindle. Cortical polarization is altered after spindle disassembly with Colcemid: the scattered meiotic chromosomes initiate myosin IIA and microfilament assemble in the vicinity of each chromosome mass. During sperm incorporation, both myosin II isotypes concentrate in the second polar body cleavage furrow and the sperm incorporation cone. In functional experiments, the microinjection of myosin IIA antibody disrupts meiotic maturation to metaphase II arrest, probably through depletion of spindle-associated myosin IIA protein and antibody binding to chromosome surfaces. Conversely, the microinjection of myosin IIB antibody blocks microfilament-directed chromosome scattering in Colcemid-treated mature oocytes, suggesting a role in mediating chromosome–cortical actomyosin interactions. Neither myosin II antibody, alone or coinjected, blocks second polar body formation, in vitro fertilization, or cytokinesis. Finally, microinjection of a nonphosphorylatable 20-kDa regulatory myosin light chain specifically blocks sperm incorporation cone disassembly and impedes cell cycle progression, suggesting that interference with myosin II phosphorylation influences fertilization. Thus, conventional myosins break cortical symmetry in oocytes by participating in eccentric meiotic spindle positioning, sperm incorporation cone dynamics, and cytokinesis. Although murine sperm do not express myosin II, different myosin II isotypes may have distinct roles during early embryonic development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified isoforms of dystrophin and utrophin, a dystrophin homologue, expressed in astrocytes and examined their expression patterns during dibutyryl-cAMP (dBcAMP)-induced morphological differentiation of astrocytes. Immunoblot and immunocytochemical analyses showed that full-length-type dystrophin (427 kDa), utrophin (395 kDa), and Dp71 (75 kDa), a small-type dystrophin isoform, were coexpressed in cultured nondifferentiated rat brain astrocytes and were found to be located in the cell membrane. During morphological differentiation of the astrocytes induced by 1 mM dBcAMP, the amount of Dp71 markedly increased, whereas that of dystrophin and utrophin decreased. Northern blot analyses revealed that dBcAMP regulates the mRNA levels of Dp71 and dystrophin but not that of utrophin. dBcAMP slightly increased the amount of the β-dystroglycan responsible for anchoring dystrophin isoforms and utrophin to the cell membrane. Immunocytochemical analyses showed that most utrophin was observed in the cytoplasmic area during astrocyte differentiation, whereas Dp71 was found along the cell membrane of the differentiated astrocytes. These findings suggest that most of the dystrophin/utrophin-dystroglycan complex on cell membrane in cultured astrocytes was replaced by the Dp71-dystroglycan complex during morphological differentiation. The cell biological roles of Dp71 are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes in carnation (Dianthus caryophyllus cv White Sim) under conditions previously shown to induce ethylene biosynthesis. These included treatment of flowers with 2,4-dichlorophenoxyacetic acid, ethylene, LiCl, cycloheximide, and natural and pollination-induced flower senescence. Accumulation of ACC synthase transcripts in leaves following mechanical wounding and treatment with 2,4-dichlorophenoxyacetic acid or LiCl was also determined by RNA gel-blot analysis. As in other species, the carnation ACC synthase genes were found to be differentially regulated in a tissue-specific manner. DCACS2 and DCACS3 were preferentially expressed in styles, whereas DCACS1 mRNA was most abundant in petals. Cycloheximide did not induce increased accumulation of ACC synthase transcripts in carnation flowers, whereas the expression of ACC synthase was up-regulated by auxin, ethylene, LiCl, pollination, and senescence in a floral-organ-specific manner. Expression of the three ACC synthases identified in carnation did not correspond to elevated ethylene biosynthesis from wounded or auxin-treated leaves, and there are likely additional members of the carnation ACC synthase gene family responsible for ACC synthase expression in vegetative tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin-dependent protein kinases (CDKs) play key roles in regulating the eukaryotic cell cycle. We have analyzed the expression of four rice (Oryza sativa) CDK genes, cdc2Os1, cdc2Os2, cdc2Os3, and R2, by in situ hybridization of sections of root apices. Transcripts of cdc2Os1, cdc2Os2, and R2 were detected uniformly in the dividing region of the root apex. cdc2Os1 and cdc2Os2 were also expressed in differentiated cells such as those in the sclerenchyma, pericycle, and parenchyma of the central cylinder. By contrast, signals corresponding to transcripts of cdc2Os3 were distributed only in patches in the dividing region. Counterstaining of sections with 4′,6-diamidino-2-phenylindole and double-target in situ hybridization with a probe for histone H4 transcripts revealed that cdc2Os3 transcripts were abundant from the G2 to the M phase, but were less abundant or absent during the S phase. The levels of the Cdc2Os3 protein and its associated histone H1-kinase activity were reduced by treatment of cultured cells with hydroxyurea, which blocks cycling cells at the onset of the S phase. Our results suggest that domains other than the conserved amino acid sequence (the PSTAIRE motif) have important roles in the function of non-PSTAIRE CDKs in distinct cell-cycle phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the feedback regulation of ethylene biosynthesis in tomato (Lycopersicon esculentum) fruit with respect to the transition from system 1 to system 2 ethylene production. The abundance of LE-ACS2, LE-ACS4, and NR mRNAs increased in the ripening fruit concomitant with a burst in ethylene production. These increases in mRNAs with ripening were prevented to a large extent by treatment with 1-methylcyclopropene (MCP), an ethylene action inhibitor. Transcripts for the LE-ACS6 gene, which accumulated in preclimacteric fruit but not in untreated ripening fruit, did accumulate in ripening fruit treated with MCP. Treatment of young fruit with propylene prevented the accumulation of transcripts for this gene. LE-ACS1A, LE-ACS3, and TAE1 genes were expressed constitutively in the fruit throughout development and ripening irrespective of whether the fruit was treated with MCP or propylene. The transcripts for LE-ACO1 and LE-ACO4 genes already existed in preclimacteric fruit and increased greatly when ripening commenced. These increases in LE-ACO mRNA with ripening were also prevented by treatment with MCP. The results suggest that in tomato fruit the preclimacteric system 1 ethylene is possibly mediated via constitutively expressed LE-ACS1A and LE-ACS3 and negatively feedback-regulated LE-ACS6 genes with preexisting LE-ACO1 and LE-ACO4 mRNAs. At the onset of the climacteric stage, it shifts to system 2 ethylene, with a large accumulation of LE-ACS2, LE-ACS4, LE-ACO1, and LE-ACO4 mRNAs as a result of a positive feedback regulation. This transition from system 1 to system 2 ethylene production might be related to the accumulated level of NR mRNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of the alternative oxidase (AOX) was investigated during cotyledon development in soybean (Glycine max [L.] Merr.) seedlings. The total amount of AOX protein increased throughout development, not just in earlier stages as previously thought, and was correlated with the increase in capacity of the alternative pathway. Each AOX isoform (AOX1, AOX2, and AOX3) showed a different developmental trend in mRNA abundance, such that the increase in AOX protein and capacity appears to involve a shift in gene expression from AOX2 to AOX3. As the cotyledons aged, the size of the mitochondrial ubiquinone pool decreased. We discuss how this and other factors may affect the alternative pathway activity that results from the developmental regulation of AOX expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two genes coding for S-adenosyl-l-methionine synthase (SAMS, EC 2.5.1.6) were previously isolated from pea (Pisum sativum) ovaries. Both SAMS genes were highly homologous throughout their coding regions but showed a certain degree of sequence divergence within the 5′ and the 3′ untranslated regions. These regions have been used as gene-specific probes to analyze the differential expression of SAMS1 and SAMS2 genes in pea plants. The ribonuclease protection assay revealed different expression patterns for each individual gene. SAMS1 was strongly expressed in nearly all tissues, especially in roots. SAMS2 expression was weaker, reaching its highest level at the apex. Following pollination, SAMS1 was specifically up-regulated, whereas SAMS2 was expressed constitutively. The up-regulation of SAMS1 during ovary development was also observed in unpollinated ovaries treated with auxins. In unpollinated ovaries an increase in SAMS1 expression was observed as a consequence of ethylene production associated with the emasculation process. In senescing ovaries both SAMS1 and SAMS2 genes showed increased expression. Ethylene treatment of unpollinated ovaries led to an increase in the SAMS1 mRNA level. However, SAMS2 expression remained unchangeable after ethylene treatment, indicating that SAMS2 induction during ovary senescence was not ethylene dependent. SAMS mRNAs were localized by in situ hybridization at the endocarp of developing fruits and in the ovules of senescing ovaries. Our results indicate that the transcriptional regulation of SAMS genes is developmentally controlled in a specific way for each gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two divergent genes encoding fructokinase, Frk1 and Frk2, have been previously shown to be expressed in tomato (Lycopersicon esculentum L.) and have now been further characterized with regard to their spatial expression and the enzymic properties of the encoded proteins. Frk1 and Frk2 mRNA levels were coordinately induced by exogenous sugar, indicating that both belong to the growing class of sugar-regulated genes. However, in situ hybridization indicated that Frk1 and Frk2 were expressed in a spatially distinct manner, with Frk2 mRNA primarily localized in cells of the fruit pericarp, which store starch, and Frk1 mRNA distributed ubiquitously in pericarp tissue. To evaluate the biochemical characteristics of the products of the Frk1 and Frk2 genes, each cDNA was expressed in a mutant yeast (Saccharomyces cerevisiae) line defective in hexose phosphorylation and unable to grow on glucose or fructose (Fru). Both Frk1 and Frk2 proteins expressed in yeast conferred the ability to grow on Fru and exhibited fructokinase activity in vitro. Although both Frk1 and Frk2 both utilized Fru as a substrate, only Frk2 activity was inhibited at high Fru concentrations. These results indicate that Frk2 can be distinguished from Frk1 by its sensitivity to substrate inhibition and by its temporal and spatial pattern of expression, which suggests that it plays a primary role in plant cells specialized for starch storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronatine is a phytotoxin produced by some plant-pathogenic bacteria. It has been shown that coronatine mimics the action of methyl jasmonate (MeJA) in plants. MeJA is a plant-signaling molecule involved in stress responses such as wounding and pathogen attack. In Arabidopsis thaliana, MeJA is essential for pollen grain development. The coi1 (for coronatine-insensitive) mutant of Arabidopsis, which is insensitive to coronatine and MeJA, produces sterile male flowers and shows an altered response to wounding. When the differential display technique was used, a message that was rapidly induced by coronatine in wild-type plants but not in coi1 was identified and the corresponding cDNA was cloned. The coronatine-induced gene ATHCOR1 (for A. thaliana coronatine-induced) is expressed in seedlings, mature leaves, flowers, and siliques but was not detected in roots. The expression of this gene was dramatically reduced in coi1 plants, indicating that COI1 affects its expression. ATHCOR1 was rapidly induced by MeJA and wounding in wild-type plants. The sequence of ATHCOR1 shows no strong homology to known proteins. However, the predicted polypeptide contains a conserved amino acid sequence present in several bacterial, animal, and plant hydrolases and includes a potential ATP/GTP-binding-site motif (P-loop).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrate reductase (NR) activity increased up to 14-fold in response to treatment of Arabidopsis thaliana seedlings with the cytokinin benzyladenine. NR induction was observed in seedlings germinated directly on cytokinin-containing medium, seedlings transferred to cytokinin medium, and seedlings grown in soil in which cytokinin was applied directly to the leaves. About the same level of induction was seen in both wild-type and Nia2-deletion mutants, indicating that increased NR activity is related to the expression of the minor NR gene, Nia1. The steady-state Nia1 mRNA level was increased severalfold in both wild-type and mutant seedlings after benzyladenine treatment. Transcript levels of the Nia2 gene, which is responsible for 90% of the NR activity in developing wild-type seedlings, did not show any changes upon cytokinin treatment. Nuclear run-on assays demonstrated that Nia1 gene transcription increased dramatically after cytokinin treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two major disease-causing biotypes of Vibrio cholerae, classical and El Tor, exhibit differences in their epidemic nature. Their behavior in the laboratory also differs in that El Tor strains produce two major virulence factors, cholera toxin (CT) and the toxin coregulated pilus (TCP), only under very restricted growth conditions, whereas classical strains do so in standard laboratory medium. Expression of toxin and TCP is controlled by two activator proteins, ToxR and ToxT, that operate in cascade fashion with ToxR controlling the synthesis of ToxT. Both biotypes express equivalent levels of ToxR, but only classical strains appear to express ToxT when grown in standard medium. In this report we show that restrictive expression of CT and TCP can be overcome in El Tor strains by expressing ToxT independently of ToxR. An El Tor strain lacking functional ToxT does not express CT or TCP, ruling out existence of a cryptic pathway for virulence regulation in this biotype. These results may have implications for understanding the evolution of El Tor strains toward reduced virulence with respect to classical strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide methionine sulfoxide reductase (MsrA; EC 1.8.4.6) is a ubiquitous protein that can reduce methionine sulfoxide residues in proteins as well as in a large number of methyl sulfoxide compounds. The expression of MsrA in various rat tissues was determined by using immunocytochemical staining. Although the protein was found in all tissues examined, it was specifically localized to renal medulla and retinal pigmented epithelial cells, and it was prominent in neurons and throughout the nervous system. In addition, blood and alveolar macrophages showed high expression of the enzyme. The msrA gene was mapped to the central region of mouse chromosome 14, in a region of homology with human chromosomes 13 and 8p21.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a reverse-transcriptase PCR-based protocol suitable for efficient expression analysis of multigene families is presented. The method combines restriction fragment length polymorphism (RFLP) technology with a gene family-specific version of mRNA differential display and hence is called "RFLP-coupled domain-directed differential display. "With this method, expression of all members of a multigene family at many different developmental stages, in diverse tissues and even in different organisms, can be displayed on one gel. Moreover, bands of interest, representing gene family members, are directly accessible to sequence analysis, without the need for subcloning. The method thus enables a detailed, high-resolution expression analysis of known gene family members as well as the identification and characterization of new ones. Here the technique was used to analyze differential expression of MADS-box genes in male and female inflorescences of maize (Zea mays ssp. mays). Six different MADS-box genes could be identified, being either specifically expressed in the female sex or preferentially expressed in male or female inflorescences, respectively. Other possible applications of the method are discussed.