5 resultados para differential association

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer (NK) cell cytotoxicity is regulated in large part by the expression of NK cell receptors able to bind class I major histocompatibility complex glycoproteins. The receptors associated with recognition of HLA-C allospecificities are the two-domain Ig-like molecules, p50 and p58 proteins, with highly homologous extracellular domains but differing in that they have either an activating or inhibitory function, respectively, depending on the transmembrane domain and cytoplasmic tails that they possess. We have compared the binding to HLA-Cw7 of an inhibitory p58 molecule, NKAT2, the highly homologous activating p50 molecule, clone 49, and a second activating p50 molecule, clone 39, which has homologies to both NKAT1 and NKAT2. NKAT2 binds to HLA-Cw7 with very rapid association and dissociation rates. However, the p50 receptors bind only very weakly, if at all, to HLA-C. The molecular basis of this difference is analyzed, and the functional significance of these observations is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent availability of mice lacking the neuronal form of the vesicular monoamine transporter 2 (VMAT2) affords the opportunity to study its roles in storage and release. Carbon fiber microelectrodes were used to measure individual secretory events of histamine and 5-hydroxytryptamine (5-HT) from VMAT2-expressing mast cells as a model system for quantal release. VMAT2 is indispensable for monoamine storage because mast cells from homozygous (VMAT2−/−) mice, while undergoing granule-cell fusion, do not release monoamines. Cells from heterozygous animals (VMAT2+/−) secrete lower amounts of monoamine per granule than cells from wild-type controls. Investigation of corelease of histamine and 5-HT from granules in VMAT2+/− cells revealed 5-HT quantal size was reduced more than that of histamine. Thus, although vesicular transport is the limiting factor determining quantal size of 5-HT and histamine release, intragranular association with the heparin matrix also plays a significant role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transformation of normal cloned rat embryo fibroblast (CREF) cells with cellular oncogenes results in acquisition of anchorage-independent growth and oncogenic potential in nude mice. These cellular changes correlate with an induction in the expression of a cancer progression-promoting gene, progression elevated gene-3 (PEG-3). To define the mechanism of activation of PEG-3 as a function of transformation by the Ha-ras and v-raf oncogenes, evaluations of the signaling and transcriptional regulation of the ~2.0 kb promoter region of the PEG-3 gene, PEG-Prom, was undertaken. The full-length and various mutated regions of the PEG-Prom were linked to a luciferase reporter construct and tested for promoter activity in CREF and oncogene-transformed CREF cells. An analysis was also performed using CREF cells doubly transformed with Ha-ras and the Ha-ras specific suppressor gene Krev-1, which inhibits the transformed phenotype in vitro. These assays document an association between expression of the transcription regulator PEA3 and PEG-3. The levels of PEA3 and PEG-3 RNA and proteins are elevated in the oncogenically transformed CREF cells, and reduced in transformation and tumorigenic suppressed Ha-ras/Krev-1 doubly transformed CREF cells. Enhanced tumorigenic behavior, PEG-3 promoter function and PEG-3 expression in Ha-ras transformed cells were all dependent upon increased activity within the mitogen-activated protein kinase (MAPK) pathway. Electrophoretic mobility shift assays and DNase I footprinting experiments indicate that PEA3 binds to sites within the PEG-Prom in transformed rodent cells in an area adjacent to the TATA box in a MAPK-dependent fashion. These findings demonstrate an association between Ha-ras and v-raf transformation of CREF cells with elevated PEA3 and PEG-3 expression, and they implicate MAPK signaling via PEA3 as a signaling cascade involved in activation of the PEG-Prom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SH-PTP1 (also known as PTP1C, HCP, and SHP) is a non-transmembrane protein tyrosine phosphatase (PTPase) containing two tandem Src homology 2 (SH2) domains. We show here that the two SH2 (N-SH2 and C-SH2) domains in SH-PTP1 have different functions in regulation of the PTPase domain and thereby signal transduction. While the N-terminal SH2 domain is both necessary and sufficient for autoinhibition through an intramolecular association with the PTPase domain, truncation of the C-SH2 domain [SH-PTP1 (delta CSH2) construct] has little effect on SH-PTP1 activity. A synthetic phosphotyrosine residue (pY) peptide derived from the erythropoietin receptor (EpoR pY429) binds to the N-SH2 domain and activates both wild-type SH-PTP1 and SH-PTP1 (delta CSH2) 60- to 80-fold. Another pY peptide corresponding to a phosphorylation site on the IgG Fc receptor (Fc gamma RIIB1 pY309) associates with both the C-SH2 domain (Kd = 2.8 microM and the N-SH2 domain (Kd = 15.0 microM) and also activates SH-PTP1 12-fold. By analysis of the effect of the Fc gamma RIIB1 pY309 peptide on SH-PTP1 (delta CSH2), SH-PTP1 (R30K/R33E), SH-PTP1 (R30K/R136K), and SH-PTP1 (R136K) mutants in which the function of either the N- or C-SH2 domain has been impaired, we have determined that both synthetic pY peptides stimulate SH-PTP1 by binding to its N-SH2 domain; binding of pY ligand to the C-SH2 domain has no effect on SH-PTP1 activity. We propose that the N-terminal SH2 domain serves both as a regulatory domain and as a recruiting unit, whereas the C-terminal SH2 domain acts merely as a recruiting unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferon tau (IFN tau), originally identified as a pregnancy recognition hormone, is a type I interferon that is related to the various IFN alpha species (IFN alpha s). Ovine IFN tau has antiviral activity similar to that of human IFN alpha A on the Madin-Darby bovine kidney (MDBK) cell line and is equally effective in inhibiting cell proliferation. In this study, IFN tau was found to differ from IFN alpha A in that is was > 30-fold less toxic to MDBK cells at high concentrations. Excess IFN tau did not block the cytotoxicity of IFN alpha A on MDBK cells, suggesting that these two type I IFNs recognize the type I IFN receptor differently on these cells. In direct binding studies, 125I-IFN tau had a Kd of 3.90 x 10(-10) M for receptor on MDBK cells, whereas that of 125I-IFN alpha A was 4.45 x 10(-11) M. Consistent with the higher binding affinity, IFN alpha A was severalfold more effective than IFN tau in competitive binding against 125I-IFN tau to receptor on MDBK cells. Paradoxically, the two IFNs had similar specific antiviral activities on MDBK cells. However, maximal IFN antiviral activity required only fractional occupancy of receptors, whereas toxicity was associated with maximal receptor occupancy. Hence, IFN alpha A, with the higher binding affinity, was more toxic than IFN tau. The IFNs were similar in inducing the specific phosphorylation of the type I receptor-associated tyrosine kinase Tyk2, and the transcription factors Stat1 alpha and Stat2, suggesting that phosphorylation of these signal transduction proteins is not involved in the cellular toxicity associated with type I IFNs. Experiments using synthetic peptides suggest that differences in the interaction at the N terminal of IFN tau and IFN alpha with the type I receptor complex contribute significantly to differences in high-affinity equilibrium binding of these molecules. It is postulated that such a differential recognition of the receptor is responsible for the similar antiviral but different cytotoxic effects of these IFNs. Moreover, these data imply that receptors are "spare'' with respect to certain biological properties, and we speculate that IFNs may induce a concentration-dependent selective association of receptor subunits.