4 resultados para determining factors

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aminoacyl-tRNA synthetases (tRNA synthetases) of higher eukaryotes form a multiprotein complex. Sequence elements that are responsible for the protein assembly were searched by using a yeast two-hybrid system. Human cytoplasmic isoleucyl-tRNA synthetase is a component of the multi-tRNA synthetase complex and it contains a unique C-terminal appendix. This part of the protein was used as bait to identify an interacting protein from a HeLa cDNA library. The selected sequence represented the internal 317 amino acids of human bifunctional (glutamyl- and prolyl-) tRNA synthetase, which is also known to be a component of the complex. Both the C-terminal appendix of the isoleucyl-tRNA synthetase and the internal region of bifunctional tRNA synthetase comprise repeating sequence units, two repeats of about 90 amino acids, and three repeats of 57 amino acids, respectively. Each repeated motif of the two proteins was responsible for the interaction, but the stronger interaction was shown by the native structures containing multiple motifs. Interestingly, the N-terminal extension of human glycyl-tRNA synthetase containing a single motif homologous to those in the bifunctional tRNA synthetase also interacted with the C-terminal motif of the isoleucyl-tRNA synthetase although the enzyme is not a component of the complex. The data indicate that the multiplicity of the binding motif in the tRNA synthetases is necessary for enhancing the interaction strength and may be one of the determining factors for the tRNA synthetases to be involved in the formation of the multi-tRNA synthetase complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of a multisubunit protein (immunoglobulin light chain) was solved in three crystal forms, differing only in the solvent of crystallization. The three structures were obtained at high ionic strength and low pH, high ionic strength and high pH, and low ionic strength and neutral pH. The three resulting "snapshots" of possible structures show that their variable-domain interactions differ, reflecting their stabilities under specific solvent conditions. In the three crystal forms, the variable domains had different rotational and translational relationships, whereas no alteration of the constant domains was found. The critical residues involved in the observed effect of the solvent are tryptophans and histidines located between the two variable domains in the dimeric structure. Tryptophan residues are commonly found in interfaces between proteins and their subunits, and histidines have been implicated in pH-dependent conformation changes. The quaternary structure observed for a multisubunit protein or protein complex in a crystal may be influenced by the interactions of the constituents within the molecule or complex and/or by crystal packing interactions. The comparison of buried surface areas and hydrogen bonds between the domains forming the molecule and between the molecules forming the crystals suggest that, for this system, the interactions within the molecule are most likely the determining factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the regulation of mitochondrial DNA (mtDNA) copy number is performed by nuclear-coded factors, very little is known about the mechanisms controlling this process. We attempted to introduce nonhuman ape mtDNA into human cells harboring either no mtDNA or mutated mtDNAs (partial deletion and tRNA gene point mutation). Unexpectedly, only cells containing no mtDNA could be repopulated with nonhuman ape mtDNA. Cells containing a defective human mtDNA did not incorporate or maintain ape mtDNA and therefore died under selection for oxidative phosphorylation function. On the other hand, foreign human mtDNA was readily incorporated and maintained in these cells. The suicidal preference for self-mtDNA showed that functional parameters associated with oxidative phosphorylation are less relevant to mtDNA maintenance and copy number control than recognition of mtDNA self-determinants. Non–self-mtDNA could not be maintained into cells with mtDNA even if no selection for oxidative phosphorylation was applied. The repopulation kinetics of several mtDNA forms after severe depletion by ethidium bromide treatment showed that replication and maintenance of mtDNA in human cells are highly dependent on molecular features, because partially deleted mtDNA molecules repopulated cells significantly faster than full-length mtDNA. Taken together, our results suggest that mtDNA copy number may be controlled by competition for limiting levels of trans-acting factors that recognize primarily mtDNA molecular features. In agreement with this hypothesis, marked variations in mtDNA levels did not affect the transcription of nuclear-coded factors involved in mtDNA replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interleukin 2 (IL-2) gene is subject to two types of regulation: its expression is T-lymphocyte-specific and it is acutely dependent on specific activation signals. The IL-2 transcriptional apparatus integrates multiple types of biochemical information in determining whether or not the gene will be expressed, using multiple diverse transcription factors that are each optimally activated or inhibited by different signaling pathways. When activation of one or two of these factors is blocked IL-2 expression is completely inhibited. The inability of the other, unaffected factors to work is explained by the striking finding that none of the factors interacts stably with its target site in the IL-2 enhancer unless all the factors are present. Coordinate occupancy of all the sites in the minimal enhancer is apparently maintained by continuous assembly and disassembly cycles that respond to the instantaneous levels of each factor in the nuclear compartment. In addition, the minimal enhancer undergoes specific increases in DNase I accessibility, consistent with dramatic changes in chromatin structure upon activation. Still to be resolved is what interaction(s) conveys T-lineage specificity. In the absence of activating signals, the minimal IL-2 enhancer region in mature T cells is apparently unoccupied, exactly as in non-T lineage cells. However, in a conserved but poorly studied upstream region, we have now mapped several novel sites of DNase I hypersensitivity in vivo that constitutively distinguish IL-2 producer type T cells from cell types that cannot express IL-2. Thus a distinct domain of the IL-2 regulatory sequence may contain sites for competence- or lineage-marking protein contacts.