5 resultados para demise of cursive
em National Center for Biotechnology Information - NCBI
Resumo:
Insulin-dependent diabetes mellitus is an autoimmune disease, under polygenic control, manifested only when >90% of the insulin-producing β cells are destroyed. Although the disease is T cell mediated, the demise of the β cell results from a number of different insults from the immune system. It has been proposed that foremost amongst these effector mechanisms is CD95 ligand-induced β cell death. Using the nonobese diabetic lpr mouse as a model system, we have found, to the contrary, that CD95 plays only a minor role in the death of β cells. Islet grafts from nonobese diabetic mice that carry the lpr mutation and therefore lack CD95 were protected only marginally from immune attack when grafted into diabetic mice. An explanation to reconcile these differing results is provided.
Resumo:
Although the prevalence or even occurrence of insect herbivory during the Late Carboniferous (Pennsylvanian) has been questioned, we present the earliest-known ecologic evidence showing that by Late Pennsylvanian times (302 million years ago) a larva of the Holometabola was galling the internal tissue of Psaronius tree-fern fronds. Several diagnostic cellular and histological features of these petiole galls have been preserved in exquisite detail, including an excavated axial lumen filled with fecal pellets and comminuted frass, plant-produced response tissue surrounding the lumen, and specificity by the larval herbivore for a particular host species and tissue type. Whereas most suggestions over-whelmingly support the evolution of such intimate and reciprocal plant-insect interactions 175 million years later, we provide documentation that before the demise of Pennsylvanian age coal-swamp forests, a highly stereotyped life cycle was already established between an insect that was consuming internal plant tissue and a vascular plant host responding to that herbivory. This and related discoveries of insect herbivore consumption of Psaronius tissues indicate that modern-style herbivores were established in Late Pennsylvanian coal-swamp forests.
Resumo:
The transcription factor GATA-1 recognizes a consensus motif present in regulatory regions of numerous erythroid-expressed genes. Mouse embryonic stem cells lacking GATA-1 cannot form mature red blood cells in vivo. In vitro differentiation of GATA-1- embryonic stem cells gives rise to a population of committed erythroid precursors that exhibit developmental arrest and death. We show here that the demise of GATA-1- erythroid cells is accompanied by several features characteristics of apoptosis. This process occurs despite normal expression of all known GATA target genes examined, including the erythropoietin receptor, and independent of detectable accumulation of the tumor suppressor protein p53. Thus, in addition to its established role in regulating genes that define the erythroid phenotype, GATA-1 also supports the viability of red cell precursors by suppressing apoptosis. These results illustrate the multifunctional nature of GATA-1 and suggest a mechanism by which other hematopoietic transcription factors may ensure the development of specific lineages.
Resumo:
A densely sampled, diverse new fauna from the uppermost Cedar Mountain Formation, Utah, indicates that the basic pattern of faunal composition for the Late Cretaceous of North America was already established by the Albian-Cenomanian boundary. Multiple, concordant 40Ar/39Ar determinations from a volcanic ash associated with the fauna have an average age of 98.39 ± 0.07 million years. The fauna of the Cedar Mountain Formation records the first global appearance of hadrosaurid dinosaurs, advanced lizard (e.g., Helodermatidae), and mammal (e.g., Marsupialia) groups, and the first North American appearance of other taxa such as tyrannosaurids, pachycephalosaurs, and snakes. Although the origin of many groups is unclear, combined biostratigraphic and phylogenetic evidence suggests an Old World, specifically Asian, origin for some of the taxa, an hypothesis that is consistent with existing evidence from tectonics and marine invertebrates. Large-bodied herbivores are mainly represented by low-level browsers, ornithopod dinosaurs, whose radiations have been hypothesized to be related to the initial diversification of angiosperm plants. Diversity at the largest body sizes (>106 g) is low, in contrast to both preceding and succeeding faunas; sauropods, which underwent demise in the Northern hemisphere coincident with the radiation of angiosperms, apparently went temporarily unreplaced by other megaherbivores. Morphologic and taxonomic diversity among small, omnivorous mammals, multituberculates, is also low. A later apparent increase in diversity occurred during the Campanian, coincident with the appearance of major fruit types among angiosperms, suggesting the possibility of adaptive response to new resources.
Resumo:
From ≈11,200 to 8,000 years ago, the Great Plains of North America were populated by small Paleoindian hunting groups with well developed weaponry and the expertise to successfully hunt large mammals, especially mammoths and bison. Mammoths became extinct on the Plains by 11,000 years ago, and, although paleoecological conditions were worsening, their demise may have been hastened by human predation. After this, the main target of the Plains Paleoindian hunters consisted of subspecies of bison, Bison antiquus and Bison occidentalis. As bison populations gradually diminished, apparently because of worsening ecological conditions, by ≈8,000 years ago, human subsistence was forced into a greater dependence on small animal and plant foods. Human paleoecology studies of the Paleoindian time period rely heavily on multidisciplinary efforts. Geomorphologists, botanists, soil scientists, palynologists, biologists, and other specialists aid archaeologists in data recovery and analysis, although, with few exceptions, their contributions are derived from the fringes rather than the mainstream of their disciplines.