2 resultados para delivery technology

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of antisense technology has focused in part on creating improved methods for delivering oligodeoxynucleotides (ODNs) to cells. In this report, we describe a cationic lipid that, when formulated with the fusogenic lipid dioleoylphosphatidyliethanolamine, greatly improves the cellular uptake properties of antisense ODNs, as well as plasmid DNA. This lipid formulation, termed GS 2888 cytofectin, (i) efficiently transfects ODNs and plasmids into many cell types in the presence or absence of 10% serum in the medium, (ii) uses a 4- to 10-fold lower concentration of the agent as compared to the commercially available Lipofectin liposome, and (iii) is > or = 20-fold more effective at eliciting antisense effects in the presence of serum when compared to Lipofectin. Here we show antisense effects using GS 2888 cytofectin together with C-5 propynyl pyrimidine phosphorothioate ODNs in which we achieve inhibition of gene expression using low nanomolar concentrations of ODN. This agent expands the utility of antisense ODNs for their use in understanding gene function and offers the potential for its use in DNA delivery applications in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain amyloid of Alzheimer disease (AD) may potentially be imaged in patients with AD by using neuroimaging technology and a radiolabeled form of the 40-residue beta-amyloid peptide A beta 1-40 that is enabled to undergo transport through the brain capillary endothelial wall, which makes up the blood-brain barrier (BBB) in vivo. Transport of 125I-labeled A beta 1-40 (125I-A beta 1-40) through the BBB was found to be negligible by experiments with both an intravenous injection technique and an internal carotid artery perfusion method in anesthetized rats. In addition, 125I-A beta 1-40 was rapidly metabolized after either intravenous injection or internal carotid artery perfusion. BBB transport was increased and peripheral metabolism was decreased by conjugation of monobiotinylated 125I-A beta 1-40 to a vector-mediated drug delivery system, which consisted of a conjugate of streptavidin (SA) and the OX26 monoclonal antibody to the rat transferrin receptor, which undergoes receptor-mediated transcytosis through the BBB. The brain uptake, expressed as percent of injected dose delivered per gram of brain, of the 125I,bio-A beta 1-40/SA-OX26 conjugate was 0.15 +/- 0.01, a level that is 2-fold greater than the brain uptake of morphine. The binding of the 125I,bio-A beta 1-40/SA-OX26 conjugate to the amyloid of AD brain was demonstrated by both film and emulsion autoradiography performed on frozen sections of AD brain. Binding of the 125I,bio-A beta 1-40/SA-OX26 conjugate to the amyloid of AD brain was completely inhibited by high concentrations of unlabeled A beta 1-40. In conclusion, these studies show that BBB transport and access to amyloid within brain may be achieved by conjugation of A beta 1-40 to a vector-mediated BBB drug delivery system.