6 resultados para decoding skills
em National Center for Biotechnology Information - NCBI
Resumo:
The temporally encoded information obtained by vibrissal touch could be decoded “passively,” involving only input-driven elements, or “actively,” utilizing intrinsically driven oscillators. A previous study suggested that the trigeminal somatosensory system of rats does not obey the bottom-up order of activation predicted by passive decoding. Thus, we have tested whether this system obeys the predictions of active decoding. We have studied cortical single units in the somatosensory cortices of anesthetized rats and guinea pigs and found that about a quarter of them exhibit clear spontaneous oscillations, many of them around whisking frequencies (≈10 Hz). The frequencies of these oscillations could be controlled locally by glutamate. These oscillations could be forced to track the frequency of induced rhythmic whisker movements at a stable, frequency-dependent, phase difference. During these stimulations, the response intensities of multiunits at the thalamic recipient layers of the cortex decreased, and their latencies increased, with increasing input frequency. These observations are consistent with thalamocortical loops implementing phase-locked loops, circuits that are most efficient in decoding temporally encoded information like that obtained by active vibrissal touch. According to this model, and consistent with our results, populations of thalamic “relay” neurons function as phase “comparators” that compare cortical timing expectations with the actual input timing and represent the difference by their population output rate.
Resumo:
The three genes, gatC, gatA, and gatB, which constitute the transcriptional unit of the Bacillus subtilis glutamyl-tRNAGln amidotransferase have been cloned. Expression of this transcriptional unit results in the production of a heterotrimeric protein that has been purified to homogeneity. The enzyme furnishes a means for formation of correctly charged Gln-tRNAGln through the transamidation of misacylated Glu-tRNAGln, functionally replacing the lack of glutaminyl-tRNA synthetase activity in Gram-positive eubacteria, cyanobacteria, Archaea, and organelles. Disruption of this operon is lethal. This demonstrates that transamidation is the only pathway to Gln-tRNAGln in B. subtilis and that glutamyl-tRNAGln amidotransferase is a novel and essential component of the translational apparatus.
Resumo:
The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli, ≈50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ, but the other 50% shift into the −1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/− multiples of three As) yields τ. The rest of the population of mRNAs (containing nine +/− nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression.
Resumo:
Purpose: The study seeks to determine how medical library professionals performing information-technology (IT) roles are compensated and how their positions are designed compared to information technology staff in their institutions.
Resumo:
The hypothesis that age-associated impairment of cognitive and motor functions is due to oxidative molecular damage was tested in the mouse. In a blind study, senescent mice (aged 22 months) were subjected to a battery of behavioral tests for motor and cognitive functions and subsequently assayed for oxidative molecular damage as assessed by protein carbonyl concentration in different regions of the brain. The degree of age-related impairment in each mouse was determined by comparison to a reference group of young mice (aged 4 months) tested concurrently on the behavioral battery. The age-related loss of ability to perform a spatial swim maze task was found to be positively correlated with oxidative molecular damage in the cerebral cortex, whereas age-related loss of motor coordination was correlated with oxidative molecular damage within the cerebellum. These results support the view that oxidative stress is a causal factor in brain senescence. Furthermore, the findings suggest that age-related declines of cognitive and motor performance progress independently, and involve oxidative molecular damage within different regions of the brain.