3 resultados para data processing in real-time

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular reaction mechanism of the GTPase-activating protein (GAP)-catalyzed GTP hydrolysis by Ras was investigated by time resolved Fourier transform infrared (FTIR) difference spectroscopy using caged GTP (P3-1-(2-nitro)phenylethyl guanosine 5′-O-triphosphate) as photolabile trigger. This approach provides the complete GTPase reaction pathway with time resolution of milliseconds at the atomic level. Up to now, one structural model of the GAP⋅Ras⋅GDP⋅AlFx transition state analog is known, which represents a “snap shot” along the reaction-pathway. As now revealed, binding of GAP to Ras⋅GTP shifts negative charge from the γ to β phosphate. Such a shift was already identified by FTIR in GTP because of Ras binding and is now shown to be enhanced by GAP binding. Because the charge distribution of the GAP⋅Ras⋅GTP complex thus resembles a more dissociative-like transition state and is more like that in GDP, the activation free energy is reduced. An intermediate is observed on the reaction pathway that appears when the bond between β and γ phosphate is cleaved. In the intermediate, the released Pi is strongly bound to the protein and surprisingly shows bands typical of those seen for phosphorylated enzyme intermediates. All these results provide a mechanistic picture that is different from the intrinsic GTPase reaction of Ras. FTIR analysis reveals the release of Pi from the protein complex as the rate-limiting step for the GAP-catalyzed reaction. The approach presented allows the study not only of single proteins but of protein–protein interactions without intrinsic chromophores, in the non-crystalline state, in real time at the atomic level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli dihydrofolate reductase (DHFR; EC 1.5.1.3) contains five tryptophan residues that have been replaced with 6-19F-tryptophan. The 19F NMR assignments are known in the native, unliganded form and the unfolded form. We have used these assignments with stopped-flow 19F NMR spectroscopy to investigate the behavior of specific regions of the protein in real time during urea-induced unfolding. The NMR data show that within 1.5 sec most of the intensities of the native 19F resonances of the protein are lost but only a fraction (approximately 20%) of the intensities of the unfolded resonances appears. We postulate that the early disappearance of the native resonances indicates that most of the protein rapidly forms an intermediate in which the side chains have considerable mobility. Stopped-flow far-UV circular dichroism measurements indicate that this intermediate retains native-like secondary structure. Eighty percent of the intensities of the NMR resonances assigned to the individual tryptophans in the unfolded state appear with similar rate constants (k approximately 0.14 sec-1), consistent with the major phase of unfolding observed by stopped-flow circular dichroism (representing 80% of total amplitude). These data imply that after formation of the intermediate, which appears to represent an expanded structural form, all regions of the protein unfold at the same rate. Stopped-flow measurements of the fluorescence and circular dichroism changes associated with the urea-induced unfolding show a fast phase (half-time of about 1 sec) representing 20% of the total amplitude in addition to the slow phase mentioned above. The NMR data show that approximately 20% of the total intensity for each of the unfolded tryptophan resonances is present at 1.5 sec, indicating that these two phases may represent the complete unfolding of the two different populations of the native protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Newly synthesized membrane proteins travel from the Golgi complex to the cell surface in transport vesicles. We have exploited the ion channel properties of the nicotinic acetylcholine receptor (AChR) to observe in real time the constitutive delivery of newly synthesized AChR proteins to the plasma membrane in cultured muscle cells. Whole-cell voltage clamp was employed to monitor the current fluctuations induced by carbamylcholine upon the insertion into the plasma membrane of newly synthesized AChRs, following release from a 20 degrees C temperature block. We find that the transit of vesicles to the cell surface occurs within a few minutes after release of the block. The time course of electrical signals is consistent with many of the fusion events being instantaneous, although some appear to reveal the flickering of a fusion pore. AChR-containing vesicles can fuse individually or as conglomerates. Intracellular application of guanosine 5'-[gamma-thio]triphosphate inhibits the constitutive traffic of AChRs in most cells. Individual exocytotic vesicles carry between 10 and 300 AChR molecules, suggesting that AChRs may be packed extremely densely.