42 resultados para cytotoxic C20
em National Center for Biotechnology Information - NCBI
Resumo:
The relative deficiency of T helper type 1 (Th1) and cytotoxic T lymphocyte (CTL) responses in early life is associated with an increased susceptibility to infections by intracellular microorganisms. This is likely to reflect a preferential polarization of immature CD4 T cells toward a Th2 rather than a Th1 pattern upon immunization with conventional vaccines. In this report, it is shown that a single immunization within the first week of life with DNA plasmids encoding viral (measles virus hemagglutinin, Sendai virus nucleoprotein) or bacterial (C fragment of tetanus toxin) vaccine antigens can induce adult-like Th1 or mixed Th1/Th2 responses indicated by production of IgG2a vaccine-specific antibodies and preferential secretion of interferon-γ (IFN-γ) compared with interleukin (IL)-5 by antigen-specific T cells, as well as significant CTL responses. However, in spite of this potent Th1-driving capacity, subsequent DNA immunization was not capable of reverting the Th2-biased responses induced after early priming with a recombinant measles canarypox vector. Thus, DNA vaccination represents a novel strategy capable of inducing Th1 or mixed Th1/Th2 and CTL responses in neonates and early life, providing it is performed prior to exposure to Th2-driving conventional vaccine antigens.
Resumo:
The specific mechanisms underlying the varied susceptibility of HIV-infected (HIV+) individuals to opportunistic infections (OI) are still incompletely understood. One hypothesis is that quantitative differences in specific T cell responses to a colonizing organism determine the development of an AIDS-defining OI. We evaluated this hypothesis for herpes simplex virus (HSV) infection, a common OI in HIV+ patients. Using limiting dilution analyses, the frequency of HSV-specific CD8+ cytotoxic T lymphocyte precursors (pCTL) and proliferative precursors were quantitated in peripheral blood mononuclear cells from 20 patients coinfected with HIV and HSV-2. The frequency of HSV-specific CD8+ pCTL in HSV+HIV+ individuals was significantly lower than in HSV+HIV− individuals (1 in 77,000 vs. 1 in 6,000, P = .0005) and was not different than in HSV-HIV− individuals (1 in 100,000, P = .24). HIV+ patients who suffered more severe genital herpes recurrences had significantly lower HSV-specific CD8+ pCTL frequencies than those patients with mild recurrences (1 in 170,000 vs. 1 in 26,000, P = .03). In contrast, no significant difference was seen in proliferative precursor frequencies between those patients with mild vs. severe genital herpes (1 in 3,800 vs. 1 in 6,600, P > .5). Quantitative differences in pCTL frequency to HSV appear to be the most important host factor influencing the frequency and severity of HSV reactivation in HIV+ patients. Studies to reconstitute such immunity, especially in people with acyclovir-resistant HSV, appear warranted.
Resumo:
To develop a strategy that promotes efficient antiviral immunity, hybrid virus-like particles (VLP) were prepared by self-assembly of the modified porcine parvovirus VP2 capsid protein carrying a CD8+ T cell epitope from the lymphocytic choriomeningitis virus nucleoprotein. Immunization of mice with these hybrid pseudoparticles, without adjuvant, induced strong cytotoxic T lymphocyte (CTL) responses against both peptide-coated- or virus-infected-target cells. This CD8+ class I-restricted cytotoxic activity persisted in vivo for at least 9 months. Furthermore, the hybrid parvovirus-like particles were able to induce a complete protection of mice against a lethal lymphocytic choriomeningitis virus infection. To our knowledge, this study represents the first demonstration that hybrid nonreplicative VLP carrying a single viral CTL epitope can induce protection against a viral lethal challenge, in the absence of any adjuvant. These recombinant particles containing a single type of protein are easily produced by the baculovirus expression system and, therefore, represent a promising and safe strategy to induce strong CTL responses for the elimination of virus-infected cells.
Resumo:
Studies in melanoma patients have revealed that self proteins can function as targets for tumor-reactive cytotoxic T lymphocytes (CTL). One group of self proteins MAGE, BAGE, and GAGE are normally only expressed in testis and placenta, whilst another group of CTL recognized proteins are melanocyte-specific differentiation antigens. In this study we have investigated whether CTL can be raised against a ubiquitously expressed self protein, mdm-2, which is frequently overexpressed in tumors. The observation that T-cell tolerance is self major histocompatibility complex-restricted was exploited to generate CTL specific for an mdm-2 derived peptide presented by nonself major histocompatibility complex class I molecules. Thus, the allo-restricted T-cell repertoire of H-2d mice was used to isolate CTL specific for the mdm100 peptide presented by allogeneic H-2Kb class I molecules. In vitro, these CTL discriminated between transformed and normal cells, killing specifically Kb-positive melanoma and lymphoma tumors but not Kb-expressing dendritic cells. In vivo, the CTL showed antitumor activity and delayed the growth of melanoma as well as lymphoma tumors in H-2b recipient mice. These experiments show that it is possible to circumvent T-cell tolerance to ubiquitously expressed self antigens, and to target CTL responses against tumors expressing elevated levels of structurally unaltered proteins.
Resumo:
Cancer relapse after surgery is a common occurrence, most frequently resulting from the outgrowth of minimal residual disease in the form of metastases. We examined the effectiveness of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade as an adjunctive immunotherapy to reduce metastatic relapse after primary prostate tumor resection. For these studies, we developed a murine model in which overt metastatic outgrowth of TRAMP-C2 (C2) prostate cancer ensues after complete primary tumor resection. Metastatic relapse in this model occurs reliably and principally within the draining lymph nodes in close proximity to the primary tumor, arising from established metastases present at the time of surgery. Using this model, we demonstrate that adjunctive CTLA-4 blockade administered immediately after primary tumor resection reduces metastatic relapse from 97.4 to 44%. Consistent with this, lymph nodes obtained 2 weeks after treatment reveal marked destruction or complete elimination of C2 metastases in 60% of mice receiving adjunctive anti-CTLA-4 whereas 100% of control antibody-treated mice demonstrate progressive C2 lymph node replacement. Our study demonstrates the potential of adjunctive CTLA-4 blockade immunotherapy to reduce cancer relapse emanating from minimal residual metastatic disease and may have broader implications for improving the capability of immunotherapy by combining such forms of therapy with other cytoreductive measures including surgery.
Resumo:
Protein kinase A type I plays a key role in neoplastic transformation, conveying mitogenic signals of different growth factors and oncogenes. Inhibition of protein kinase A type I by antisense oligonucleotides targeting its RIα regulatory subunit results in cancer cell growth inhibition in vitro and in vivo. A novel mixed backbone oligonucleotide HYB 190 and its mismatched control HYB 239 were tested on soft agar growth of several human cancer cell types. HYB 190 demonstrated a dose-dependent inhibition of colony formation in all cell lines whereas the HYB 239 at the same doses caused a modest or no growth inhibition. A noninhibitory dose of each mixed backbone oligonucleotide was used in OVCAR-3 ovarian and GEO colon cancer cells to study whether any cooperative effect may occur between the antisense and a series of cytotoxic drugs acting by different mechanisms. Treatment with HYB 190 resulted in an additive growth inhibitory effect with several cytotoxic drugs when measured by soft agar colony formation. A synergistic growth inhibition, which correlated with increased apoptosis, was observed when HYB 190 was added to cancer cells treated with taxanes, platinum-based compounds, and topoisomerase II selective drugs. This synergistic effect was also observed in breast cancer cells and was obtained with other related drugs such as docetaxel and carboplatin. Combination of HYB 190 and paclitaxel resulted in an accumulation of cells in late S-G2 phases of cell cycle and marked induction of apoptosis. A cooperative effect of HYB 190 and paclitaxel was also obtained in vivo in nude mice bearing human GEO colon cancer xenografts. These results are the first report of a cooperative growth inhibitory effect obtained in a variety of human cancer cell lines by antisense mixed backbone oligonucleotide targeting protein kinase A type I-mediated mitogenic signals and specific cytotoxic drugs.
Resumo:
Vaccines harboring genes that encode functional oncoproteins are intrinsically hazardous, as their application may lead to introduction of these genes into normal cells and thereby to tumorigenesis. On the other hand, oncoproteins are especially attractive targets for immunotherapy of cancer, as their expression is generally required for tumor growth, making the arisal of tumor variants lacking these antigens unlikely. Using murine tumor models, we investigated the efficacy of polyepitope recombinant adenovirus (rAd) vaccines, which encode only the immunogenic T cell epitopes derived from several oncogenes, for the induction of protective anti-tumor immunity. We chose to employ rAd, as these are safe vectors that do not induce the side effects associated with, for example, vaccinia virus vaccines. A single polyepitope rAd was shown to give rise to presentation of both H-2 and human leukocyte antigen-restricted cytotoxic T lymphocyte (CTL) epitopes. Moreover, vaccination with a rAd encoding H-2-restricted CTL epitopes, derived from human adenovirus type 5 early region 1 and human papilloma virus type 16-induced tumors, elicited strong tumor-reactive CTL and protected the vaccinated animals against an otherwise lethal challenge with either of these tumors. The protection induced was superior compared with that obtained by vaccination with irradiated tumor cells. Thus, vaccination with polyepitope rAd is a powerful approach for the induction of protective anti-tumor immunity that allows simultaneous immunization against multiple tumor-associated T cell epitopes, restricted by various major histocompatibility complex haplotypes.
Resumo:
A cytotoxic T lymphocyte (CTL) clone generated in vitro from the peripheral blood of a healthy HLA-A2-positive individual against a synthetic p53 protein-derived wild-type peptide (L9V) was shown to kill squamous carcinoma cell lines derived from two head and neck carcinomas, which expressed mutant p53 genes, in a L9V/HLA-A2 specific and restricted fashion. Thus, the normal tolerance against endogenously processed p53 protein-derived self-epitopes can be broken by peptide-specific in vitro priming. p53 protein-derived wild-type peptides might thus represent tumor associated target molecules for immunotherapeutical approaches.
Resumo:
β2-Microglobulin-deficient (β2m−) mice generate a CD4+ major histocompatibility complex class II-restricted cytotoxic T-lymphocyte (CTL) response following infection with lymphocytic choriomeningitis (LCM) virus (LCMV). We have determined the cytotoxic mechanism used by these CD4+ CTLs and have examined the role of this cytotoxic activity in pathogenesis of LCM disease in β2m− mice. Lysis of LCMV-infected target cells by CTLs from β2m− mice is inhibited by addition of soluble Fas-Ig fusion proteins or by pretreatment of the CTLs with the protein synthesis inhibitor emetine. In addition, LCMV-infected cell lines that are resistant to anti-Fas-induced apoptosis are refractory to lysis by these virus-specific CD4+ CTLs. These data indicate that LCMV-specific CD4+ CTLs from β2m− mice use a Fas-dependent lytic mechanism. Intracranial (i.c.) infection of β2m− mice with LCMV results in loss of body weight. Fas-deficient β2m−.lpr mice develop a similar wasting disease following i.c. infection. This suggests that Fas-dependent cytotoxicity is not required for LCMV-induced weight loss. A potential mediator of this chronic wasting disease is tumor necrosis factor (TNF)-α, which is produced by LCMV-specific CD4+ CTLs. In contrast to LCMV-induced weight loss, lethal LCM disease in β2m− mice is dependent on Fas-mediated cytotoxicity. Transfer of immune splenocytes from LCMV-infected β2m− mice into irradiated infected β2m− mice results in death of recipient animals. In contrast, transfer of these splenocytes into irradiated infected β2m−.lpr mice does not cause death. Thus a role for CD4+ T-cell-mediated cytotoxicity in virus-induced immunopathology has now been demonstrated.
Resumo:
To understand the role of the immune system in limiting HIV type 1 replication, it is critical to know to what extent the rapid turnover of productively infected cells is caused by viral cytopathicity or by immune-mediated lysis. We show that uncultured peripheral blood mononuclear cells of many patients contain cytotoxic T lymphocytes (CTL) that lyse target cells—at plausible peripheral blood mononuclear cell-to-target ratios—with half-lives of less than 1 day. In 23 patients with CD4 counts ranging from 10 to 900 per μl, the average rate of CTL-mediated lysis corresponds to a target cell half-life of 0.7 day. We develop mathematical models to calculate the turnover rate of infected cells subjected to immune-mediated lysis and viral cytopathicity and to estimate the fraction of cells that are killed by CTL as opposed to virus. The models provide new interpretations of drug treatment dynamics and explain why the observed rate of virus decline is roughly constant for different patients. We conclude that in HIV type 1 infection, CTL-mediated lysis can reduce virus load by limiting virus production, with small effects on the half-life of infected cells.
Resumo:
Double transgenic mice [rat insulin promoter (RIP)-tumor necrosis factor (TNF) and RIP-CD80] whose pancreatic β cells release TNF and bear CD80 all develop an acute early (6 wk) and lethal diabetes mediated by CD8 T cells. The first ultrastructural changes observed in β cells, so far unreported, are focal lesions of endoplasmic reticulum swelling at the points of contact with islet-infiltrating lymphoblasts, followed by cytoplasmic, but not nuclear, apoptosis. Such double transgenic mice were made defective in either the perforin, Fas, or TNF pathways. Remarkably, diabetes was found to be totally independent of perforin and Fas. Mice lacking TNF receptor (TNFR) II had no or late diabetes, but only a minority had severe insulitis. Mice lacking the TNF-lymphotoxin (LTα) locus (whose sole source of TNF are the β cells) all had insulitis comparable to that of nondefective mice, but no diabetes or a retarded and milder form, with lesions suggesting different mechanisms of injury. Because both TNFR II and TNF-LTα mutations have complex effects on the immune system, these data do not formally incriminate membrane TNF as the major T cell mediator of this acute autoimmune diabetes; nevertheless, in the absence of involvement of the perforin or Fas cytotoxic pathways, membrane TNF appears to be the likeliest candidate.
Resumo:
DNA vaccines express antigens intracellularly and effectively induce cellular immune responses. Because only chimpanzees can be used to model human hepatitis C virus (HCV) infections, we developed a small-animal model using HLA-A2.1-transgenic mice to test induction of HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) and protection against recombinant vaccinia expressing HCV-core. A plasmid encoding the HCV-core antigen induced CD8+ CTLs specific for three conserved endogenously expressed core peptides presented by human HLA-A2.1. When challenged, DNA-immunized mice showed a substantial (5–12 log10) reduction in vaccinia virus titer compared with mock-immunized controls. This protection, lasting at least 14 mo, was shown to be mediated by CD8+ cells. Thus, a DNA vaccine expressing HCV-core is a potential candidate for a prophylactic vaccine for HLA-A2.1+ humans.
Resumo:
The immunodominant, CD8+ cytotoxic T lymphocyte (CTL) response to the HLA-B8-restricted peptide, RAKFKQLL, located in the Epstein–Barr virus immediate-early antigen, BZLF1, is characterized by a diverse T cell receptor (TCR) repertoire. Here, we show that this diversity can be partitioned on the basis of crossreactive cytotoxicity patterns involving the recognition of a self peptide—RSKFRQIV—located in a serine/threonine kinase and a bacterial peptide—RRKYKQII—located in Staphylococcus aureus replication initiation protein. Thus CTL clones that recognized the viral, self, and bacterial peptides expressed a highly restricted αβ TCR phenotype. The CTL clones that recognized viral and self peptides were more oligoclonal, whereas clones that strictly recognized the viral peptide displayed a diverse TCR profile. Interestingly, the self and bacterial peptides equally were substantially less effective than the cognate viral peptide in sensitizing target cell lysis, and also resulted only in a weak reactivation of memory CTLs in limiting dilution assays, whereas the cognate peptide was highly immunogenic. The described crossreactions show that human antiviral, CD8+ CTL responses can be shaped by peptide ligands derived from autoantigens and environmental bacterial antigens, thereby providing a firm structural basis for molecular mimicry involving class I-restricted CTLs in the pathogenesis of autoimmune disease.
Resumo:
Colicin D has long been thought to stop protein synthesis in infected Escherichia coli cells by inactivating ribosomes, just like colicin E3. Here, we show that colicin D specifically cleaves tRNAsArg including four isoaccepting molecules both in vivo and in vitro. The cleavage occurs in vitro between positions 38 and 39 in an anticodon loop with a 2′,3′-cyclic phosphate end, and is inhibited by a specific immunity protein. Consistent with the cleavage of tRNAsArg, the RNA fraction of colicin-treated cells significantly reduced the amino acid-accepting activity only for arginine. Furthermore, we generated a single mutation of histidine in the C-terminal possible catalytic domain, which caused the loss of the killing activity in vivo together with the tRNAArg-cleaving activity both in vivo and in vitro. These findings show that colicin D directly cleaves cytoplasmic tRNAsArg, which leads to impairment of protein synthesis and cell death. Recently, we found that colicin E5 stops protein synthesis by cleaving the anticodons of specific tRNAs for Tyr, His, Asn, and Asp. Despite these apparently similar actions on tRNAs and cells, colicins D and E5 not only exhibit no sequence homology but also have different molecular mechanisms as to both substrate recognition and catalytic reaction.
Resumo:
Expression of B7-family costimulatory molecules CD80 (B7–1) and CD86 (B7–2) on tumor cells enhances host immunity. However, the role of the two B7 receptors, CD28 and CTLA4 (CD152), on T cells in antitumor immune response has not been clearly elucidated. Based on the effects of anti-CD28 and anti-CTLA4 mAbs on T cell response, it was proposed that CD28-B7 interaction promotes antitumor immunity, whereas B7-CTLA4 interaction down-regulates it. A critical test for the hypothesis is whether selective engagement of CTLA4 receptors by their natural ligands CD80 and CD86 enhances or reduces antitumor immunity. Here we used tumors expressing wild-type and mutant CD80, as well as mice with targeted mutation of CD28, to address this issue. We report that in syngeneic wild-type mice, B7W (W88>A), a CD80 mutant that has lost binding to CD28 but retained binding to CTLA4, can enhance the induction of antitumor cytotoxic T lymphocytes (CTL); B7Y (Y201>A), which binds neither CD28 nor CTLA4, fails to do so. Consistent with these observations, B7W-transfected J558 plasmocytoma and EL4 thymoma grow significantly more slowly than those transfected with either vector alone or with B7Y. Optimal tumor rejection requires wild-type CD80. Moreover, expression of a high level of CD80 on thymoma EL4 cells conveys immunity in mice with a targeted mutation of CD28 gene. Taken together, our results demonstrate that B7-CTLA4 interaction enhances production of antitumor CTL and resistance to tumor challenge and that optimal enhancement of antitumor immunity by CD80 requires its engagement of both CD28 and CTLA4.