56 resultados para cytomegalovirus
em National Center for Biotechnology Information - NCBI
Resumo:
Human cytomegalovirus (CMV), a herpesvirus that causes congenital disease and opportunistic infections in immunocompromised individuals, encodes functions that facilitate efficient viral propagation by altering host cell behavior. Here we show that CMV blocks apoptosis mediated by death receptors and encodes a mitochondria-localized inhibitor of apoptosis, denoted vMIA, capable of suppressing apoptosis induced by diverse stimuli. vMIA, a product of the viral UL37 gene, inhibits Fas-mediated apoptosis at a point downstream of caspase-8 activation and Bid cleavage but upstream of cytochrome c release, while residing in mitochondria and associating with adenine nucleotide translocator. These functional properties resemble those ascribed to Bcl-2; however, the absence of sequence similarity to Bcl-2 or any other known cell death suppressors suggests that vMIA defines a previously undescribed class of anti-apoptotic proteins.
Resumo:
Mechanistic insights to viral replication and pathogenesis generally have come from the analysis of viral gene products, either by studying their biochemical activities and interactions individually or by creating mutant viruses and analyzing their phenotype. Now it is possible to identify and catalog the host cell genes whose mRNA levels change in response to a pathogen. We have used DNA array technology to monitor the level of ≈6,600 human mRNAs in uninfected as compared with human cytomegalovirus-infected cells. The level of 258 mRNAs changed by a factor of 4 or more before the onset of viral DNA replication. Several of these mRNAs encode gene products that might play key roles in virus-induced pathogenesis, identifying them as intriguing targets for further study.
Resumo:
We identified a viral IL-10 homolog encoded by an ORF (UL111a) within the human cytomegalovirus (CMV) genome, which we designated cmvIL-10. cmvIL-10 can bind to the human IL-10 receptor and can compete with human IL-10 for binding sites, despite the fact that these two proteins are only 27% identical. cmvIL-10 requires both subunits of the IL-10 receptor complex to induce signal transduction events and biological activities. The structure of the cmvIL-10 gene is unique by itself. The gene retained two of four introns of the IL-10 gene, but the length of the introns was reduced. We demonstrated that cmvIL-10 is expressed in CMV-infected cells. Thus, expression of cmvIL-10 extends the range of counter measures developed by CMV to circumvent detection and destruction by the host immune system.
Resumo:
We used differential display analysis to identify mRNAs that accumulate to enhanced levels in human cytomegalovirus-infected cells as compared with mock-infected cells. RNAs were compared at 8 hr after infection of primary human fibroblasts. Fifty-seven partial cDNA clones were isolated, representing about 26 differentially expressed mRNAs. Eleven of the mRNAs were virus-coded, and 15 were of cellular origin. Six of the partial cDNA sequences have not been reported previously. All of the cellular mRNAs identified in the screen are induced by interferon α. The induction in virus-infected cells, however, does not involve the action of interferon or other small signaling molecules. Neutralizing antibodies that block virus infection also block the induction. These RNAs accumulate after infection with virus that has been inactivated by treatment with UV light, indicating that the inducer is present in virions. We conclude that human cytomegalovirus induces interferon-responsive mRNAs.
Resumo:
The human cytomegalovirus UL97 kinase, an important target of antiviral therapy, has an impact on at least two distinct phases of viral replication. Compared with wild-type virus, the UL97 deletion mutant exhibits an early replication defect that reduces DNA accumulation by 4- to 6-fold, as well as a late capsid maturation defect responsible for most of the observed 100- to 1000-fold reduction in replication. Block-release experiments with the antiviral 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl)-benzimidazole revealed an important role for UL97 kinase in capsid assembly. Although cleavage of concatemeric DNA intermediates to unit-length genomes remained unaffected, progeny mutant virus maturation was delayed, with accumulation of progeny at significantly reduced levels compared with wild type after release of this block. Transmission electron microscopy confirmed the aberrant accumulation of empty A-like capsids containing neither viral DNA nor an internal scaffold structure, consistent with a failure to stably package DNA in mutant virus-infected cells. The function of UL97 in DNA synthesis as well as capsid assembly suggests that protein phosphorylation mediated by this herpesvirus-conserved kinase increases the efficiency of these two distinct phases of virus replication.
Resumo:
The M78 protein of murine cytomegalovirus exhibits sequence features of a G protein-coupled receptor. It is synthesized with early kinetics, it becomes partially colocalized with Golgi markers, and it is incorporated into viral particles. We have constructed a viral substitution mutant, SMsubM78, which lacks most of the M78 ORF. The mutant produces a reduced yield in cultured 10.1 fibroblast and IC21 macrophage cell lines. The defect is multiplicity dependent and greater in the macrophage cell line. Consistent with its growth defect in cultured cells, the mutant exhibits reduced pathogenicity in mice, generating less infectious progeny than wild-type virus in all organs assayed. SMsubM78 fails to efficiently activate accumulation of the viral m123 immediate-early mRNA in infected macrophages. M78 facilitates the accumulation of the immediate-early mRNA in cycloheximide-treated cells, arguing that it acts in the absence of de novo protein synthesis. We conclude that the M78 G protein-coupled receptor homologue is delivered to cells as a constituent of the virion, and it acts to facilitate the accumulation of immediate-early mRNA.
Resumo:
Antigens of pathogenic microbes that mimic autoantigens are thought to be responsible for the activation of autoreactive T cells. Viral infections have been associated with the development of the neuroendocrine autoimmune diseases type 1 diabetes and stiff-man syndrome, but the mechanism is unknown. These diseases share glutamic acid decarboxylase (GAD65) as a major autoantigen. We screened synthetic peptide libraries dedicated to bind to HLA-DR3, which predisposes to both diseases, using clonal CD4+ T cells reactive to GAD65 isolated from a prediabetic stiff-man syndrome patient. Here we show that these GAD65-specific T cells crossreact with a peptide of the human cytomegalovirus (hCMV) major DNA-binding protein. This peptide was identified after database searching with a recognition pattern that had been deduced from the library studies. Furthermore, we showed that hCMV-derived epitope can be naturally processed by dendritic cells and recognized by GAD65 reactive T cells. Thus, hCMV may be involved in the loss of T cell tolerance to autoantigen GAD65 by a mechanism of molecular mimicry leading to autoimmunity.
Resumo:
The induction of autoantibodies to U1 small nuclear ribonucleoprotein (U1 snRNP) complexes is not well understood. We present evidence that healthy individuals with cytomegalovirus (CMV) infection have an increased frequency and quantity of antibodies to ribonucleoprotein, directed primarily against the U1-70k protein. A significant association between the presence of antibodies to CMV and antibodies to the total RNP targeted by the immune response to the spliceosome (to both the Sm and RNP; Sm/RNP) was found for patients with systemic lupus erythematosus (SLE) but not those with mixed connective-tissue disease. CMV thus may play a role in inducing autoimmune responses in a subset of patients with systemic lupus erythematosus.
Resumo:
Many persistent viruses have evolved the ability to subvert MHC class I antigen presentation. Indeed, human cytomegalovirus (HCMV) encodes at least four proteins that down-regulate cell-surface expression of class I. The HCMV unique short (US)2 glycoprotein binds newly synthesized class I molecules within the endoplasmic reticulum (ER) and subsequently targets them for proteasomal degradation. We report the crystal structure of US2 bound to the HLA-A2/Tax peptide complex. US2 associates with HLA-A2 at the junction of the peptide-binding region and the α3 domain, a novel binding surface on class I that allows US2 to bind independently of peptide sequence. Mutation of class I heavy chains confirms the importance of this binding site in vivo. Available data on class I-ER chaperone interactions indicate that chaperones would not impede US2 binding. Unexpectedly, the US2 ER-luminal domain forms an Ig-like fold. A US2 structure-based sequence alignment reveals that seven HCMV proteins, at least three of which function in immune evasion, share the same fold as US2. The structure allows design of further experiments to determine how US2 targets class I molecules for degradation.
Resumo:
Human cytomegalovirus (HCMV) infection alters the expression of many cellular genes, including IFN-stimulated genes (ISGs) [Zhu, H., Cong, J.-P., Mamtora, G., Gingeras, T. & Shenk, T. (1998) Proc. Natl. Acad. Sci. USA 95, 14470–14475]. By using high-density cDNA microarrays, we show that the HCMV-regulated gene expression profile in fibroblasts does not differ substantially from the response generated by IFN. Furthermore, we identified the specific viral component triggering this response as the envelope glycoprotein B (gB). Cells treated with gB, but not other herpesviral glycoproteins, exhibited the same transcriptional profile as HCMV-infected cells. Thus, the interaction of gB with its as yet unidentified cellular receptor is the principal mechanism by which HCMV alters cellular gene expression early during infection. These findings highlight a pioneering paradigm for the consequences of virus–receptor interactions.
Resumo:
We have identified a human cytomegalovirus cell-death suppressor, denoted vICA, encoded by the viral UL36 gene. vICA inhibits Fas-mediated apoptosis by binding to the pro-domain of caspase-8 and preventing its activation. vICA does not share significant sequence homology with FLIPs or other known suppressors of apoptosis, suggesting that this protein represents a new class of cell-death suppressors. Notably, resistance to Fas-mediated apoptosis is delayed in fibroblasts infected with viruses that encode mutant vICA, suggesting that vICA suppresses death-receptor-induced cell death in the context of viral infection. Although vICA is dispensable for viral replication in vitro, the common targeting of caspase-8 activation by diverse herpesviruses argues for an important role for this antiapoptotic mechanism in the pathogenesis of viral infection in the host, most likely in avoiding immune clearance by cytotoxic lymphocytes and natural killer cells.
Resumo:
Genes encoding chemokine receptor-like proteins have been found in herpes and poxviruses and implicated in viral pathogenesis. Here we describe the cellular distribution and trafficking of a human cytomegalovirus (HCMV) chemokine receptor encoded by the US28 gene, after transient and stable expression in transfected HeLa and Cos cells. Immunofluorescence staining indicated that this viral protein accumulated intracellularly in vesicular structures in the perinuclear region of the cell and showed overlap with markers for endocytic organelles. By immunogold electron microscopy US28 was seen mostly to localize to multivesicular endosomes. A minor portion of the protein (at most 20%) was also expressed at the cell surface. Antibody-feeding experiments indicated that cell surface US28 undergoes constitutive ligand-independent endocytosis. Biochemical analysis with the use of iodinated ligands showed that US28 was rapidly internalized. The high-affinity ligand of US28, the CX3C-chemokine fractalkine, reduced the steady-state levels of US28 at the cell surface, apparently by inhibiting the recycling of internalized receptor. Endocytosis and cycling of HCMV US28 could play a role in the sequestration of host chemokines, thereby modulating antiviral immune responses. In addition, the distribution of US28 mainly on endosomal membranes may allow it to be incorporated into the viral envelope during HCMV assembly.
Resumo:
Human cytomegalovirus (CMV) replication begins with the expression of two regulatory proteins, IE1(491aa) and IE2(579aa), produced from differentially spliced transcripts under control of the ie1/ie2 promoter-enhancer. A deletion mutation removing all 406 IE1(491aa)-specific amino acids was engineered into the viral genome and this mutant (RC303 delta Acc) was propagated on an IE1(491aa)-expressing human fibroblast cell line (ihfie1.3). RC303 delta Acc failed to replicate on normal human fibroblasts at low multiplicities of infection (mois). At mois > 3 plaque-forming units per cell, virus replication and production of progeny were comparable to wild type. However, at mois between 0.01 and 1, mutant virus replicated slowly on normal fibroblasts, a pattern that suggested initiation of productive infection required multiple hits. Replication of RC303 delta Acc correlated with the ability to express IE2(579aa), consistent with a role for IE1(491aa) in positive autoregulation of the ie1/ie2 promoter-enhancer and with data suggesting that virion transactivators compensate for the lack of IE1(491aa) under high moi conditions. ie1-deficient CMV should be completely avirulent, suggesting its utility as a gene therapy vector for hematopoietic progenitors that are normal sites of CMV latency.
Resumo:
The human cytomegalovirus (HCMV) early glycoprotein products of the US11 and US2 open reading frames cause increased turnover of major histocompatibility complex (MHC) class I heavy chains. Since US2 is homologous to another HCMV gene (US3), we hypothesized that the US3 gene product also may affect MHC class I expression. In cells constitutively expressing the HCMV US3 gene, MHC class I heavy chains formed a stable complex with beta 2-microglobulin. However, maturation of the N-linked glycan of MHC class I heavy chains was impaired in US3+ cells. The glycoprotein product of US3 (gpUS3) occurs mostly in a high-mannose form and coimmunoprecipitates with beta 2-microglobulin associated class I heavy chains. Mature class I molecules were detected at steady state on the surface of US3+ cells, as in control cells. Substantial perinuclear accumulation of heavy chains was observed in US3+ cells. The data suggest that gpUS3 impairs egress of MHC class I heavy chains from the endoplasmic reticulum.