15 resultados para cutaneous wound

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

(E)-α-Bisabolene synthase is one of two wound-inducible sesquiterpene synthases of grand fir (Abies grandis), and the olefin product of this cyclization reaction is considered to be the precursor in Abies species of todomatuic acid, juvabione, and related insect juvenile hormone mimics. A cDNA encoding (E)-α-bisabolene synthase was isolated from a wound-induced grand fir stem library by a PCR-based strategy and was functionally expressed in Escherichia coli and shown to produce (E)-α-bisabolene as the sole product from farnesyl diphosphate. The expressed synthase has a deduced size of 93.8 kDa and a pI of 5.03, exhibits other properties typical of sesquiterpene synthases, and resembles in sequence other terpenoid synthases with the exception of a large amino-terminal insertion corresponding to Pro81–Val296. Biosynthetically prepared (E)-α-[3H]bisabolene was converted to todomatuic acid in induced grand fir cells, and the time course of appearance of bisabolene synthase mRNA was shown by Northern hybridization to lag behind that of mRNAs responsible for production of induced oleoresin monoterpenes. These results suggest that induced (E)-α-bisabolene biosynthesis constitutes part of a defense response targeted to insect herbivores, and possibly fungal pathogens, that is distinct from induced oleoresin monoterpene production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many insects feed on blood or tissue from mammalian hosts. One potential strategy for the control of these insects is to vaccinate the host with antigens derived from the insect. The larvae of the fly Lucilia cuprina feed on ovine tissue and tissue fluids causing a cutaneous myiasis associated with considerable host morbidity and mortality. A candidate vaccine antigen, peritrophin 95, was purified from the peritrophic membrane, which lines the gut of these larvae. Serum from sheep vaccinated with peritrophin 95 inhibited growth of first-instar L. cuprina larvae that fed on this serum. Growth inhibition was probably caused by antibody-mediated blockage of the normally semipermeable peritrophic membrane and the subsequent development of an impervious layer of undefined composition on the gut lumen side of the peritrophic membrane that restricted access of nutrients to the larvae. The amino acid sequence of peritrophin 95 was determined by cloning the DNA complementary to its mRNA. The deduced amino acid sequence codes for a secreted protein containing a distinct Cys-rich domain of 317 amino acids followed by a mucin-like domain of 139 amino acids. The Cys-rich domain may be involved in binding chitin. This report describes a novel immunological strategy for the potential control of L. cuprina larvae that may have general application to the control of other insect pests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatic fibrosis represents the generalized response of the liver to injury and is characterized by excessive deposition of extracellular matrix. The cellular basis of this process is complex and involves interplay of many factors, of which cytokines are prominent. We have identified divergent fibrosing responses to injury among mouse strains and taken advantage of these differences to examine and contrast T helper (Th)-derived cytokines during fibrogenesis. Liver injury was induced with carbon tetrachloride, fibrosis was quantitated, and Th1/Th2 cytokine mRNAs measured. Liver injury in BALB/c mice resulted in severe fibrosis, whereas C57BL/6 mice developed comparatively minimal fibrosis. Fibrogenesis was significantly modified in T and B cell-deficient BALB/c and C57BL/6 severe combined immunodeficient (SCID) mice compared with wild-type counterparts, suggesting a role of Th subsets. Fibrogenic BALB/c mice exhibited a Th2 response during the wounding response, whereas C57BL/6 mice displayed a Th1 response, suggesting that hepatic fibrosis is influenced by different T helper subsets. Moreover, mice lacking interferon γ, which default to the Th2 cytokine pathway, exhibited more pronounced fibrotic lesions than did wild-type animals. Finally, shifting of the Th2 response toward a Th1 response by treatment with neutralizing anti-interleukin 4 or with interferon γ itself ameliorated fibrosis in BALB/c mice. These data support a role for immune modulation of hepatic fibrosis and suggest that Th cytokine subsets can modulate the fibrotic response to injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a real-time detection (RTD) polymerase chain reaction (PCR) with rapid thermal cycling to detect and quantify Pseudomonas aeruginosa in wound biopsy samples. This method produced a linear quantitative detection range of 7 logs, with a lower detection limit of 103 colony-forming units (CFU)/g tissue or a few copies per reaction. The time from sample collection to result was less than 1h. RTD-PCR has potential for rapid quantitative detection of pathogens in critical care patients, enabling early and individualized treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wounding of endothelial cells is associated with altered direct intercellular communication. To determine whether gap junctional communication participates to the wound repair process, we have compared connexin (Cx) expression, cell-to-cell coupling and kinetics of wound repair in monolayer cultures of PymT-transformed mouse endothelial cells (clone bEnd.3) and in bEnd.3 cells expressing different dominant negative Cx inhibitors. In parental bEnd.3 cells, mechanical wounding increased expression of Cx43 and decreased expression of Cx37 at the site of injury, whereas Cx40 expression was unaffected. These wound-induced changes in Cx expression were associated with functional changes in cell-to-cell coupling, as assessed with different fluorescent tracers. Stable transfection with cDNAs encoding for the chimeric connexin 3243H7 or the fusion protein Cx43-βGal resulted in perturbed gap junctional communication between bEnd.3 cells under both basal and wounded conditions. The time required for complete repair of a defined wound within a confluent monolayer was increased by ∼50% in cells expressing the dominant negative Cx inhibitors, whereas other cell properties, such as proliferation rate, migration of single cells, cyst formation and extracellular proteolytic activity, were unaltered. These findings demonstrate that proper Cx expression is required for coordinated migration during repair of an endothelial wound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allene oxide synthase (AOS) mediates the conversion of lipoxygenase-derived fatty acid hydroperoxides to unstable allene epoxides, which supply the precursors for the synthesis of the phytohormone jasmonic acid (JA). In this study the characterization of AOS gene expression in flax (Linum usitatissimum) is reported. AOS was constitutively expressed in different organs of flax plants. Additionally, AOS gene expression was enhanced after mechanical wounding in both the directly damaged leaves and in the systemic tissue located distal to the treated leaves. This wound-induced accumulation of AOS required the de novo biosynthesis of other unknown proteins involved in the signaling pathway modulating wound-induced AOS gene expression. Furthermore, the wound-induced AOS mRNA accumulation was correlated with the increase in the levels of JA. Both JA and its precursor, 12-oxo-phytodienoic acid, activated AOS gene expression in a dose-dependent manner. Thus, JA could activate its own biosynthetic pathway in flax leaves. Moreover, neither salicylic acid (SA) nor aspirin influenced AOS enzymatic activity. It is interesting that pretreatment with SA or aspirin inhibited wound-induced accumulation of AOS transcripts. These results suggest that a potent inhibition of JA biosynthetic capacity in leaves can be affected by SA or aspirin at the level of AOS gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroperoxide lyase (HPL) cleaves lipid hydroperoxides to produce volatile flavor molecules and also potential signal molecules. We have characterized a gene from Arabidopsis that is homologous to a recently cloned HPL from green pepper (Capsicum annuum). The deduced protein sequence indicates that this gene encodes a cytochrome P-450 with a structure similar to that of allene oxide synthase. The gene was cloned into an expression vector and expressed in Escherichia coli to demonstrate HPL activity. Significant HPL activity was evident when 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid was used as the substrate, whereas activity with 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid was approximately 10-fold lower. Analysis of headspace volatiles by gas chromatography-mass spectrometry, after addition of the substrate to E. coli extracts expressing the protein, confirmed enzyme-activity data, since cis-3-hexenal was produced by the enzymatic activity of the encoded protein, whereas hexanal production was limited. Molecular characterization of this gene indicates that it is expressed at high levels in floral tissue and is wound inducible but, unlike allene oxide synthase, it is not induced by treatment with methyl jasmonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of abscisic acid (ABA) on the accumulation of proteinase inhibitors I (Inh I) and II (Inh II) in young, excised tomato (Lycopersicon esculentum L.) plants were investigated. When supplied to excised plants through the cut stems, 100 μm ABA induced the activation of the ABA-responsive le4 gene. However, under the same conditions of assay, ABA at concentrations of up to 100 μm induced only low levels of proteinase-inhibitor proteins or mRNAs, compared with levels induced by systemin or jasmonic acid over the 24 h following treatment. In addition, ABA only weakly induced the accumulation of mRNAs of several other wound-response proteins. Assays of the ABA concentrations in leaves following wounding indicated that the ABA levels increased preferentially near the wound site, suggesting that ABA may have accumulated because of desiccation. The evidence suggests that ABA is not a component of the wound-inducible signal transduction pathway leading to defense gene activation but is likely involved in the general maintenance of a healthy plant physiology that facilitates a normal wound response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signaling through the interleukin 2 receptor (IL-2R) involves phosphorylation of several proteins including Jak3, STAT5, and, in preactivated cells, STAT3. In the present study, we examined the functional status of the IL-2R-associated Jak/STAT pathway in malignant T lymphocytes from advanced skin-based lymphomas: anaplastic large T-cell lymphoma (ALCL) and Sezary syndrome (SzS). Proliferation of three ALCL cell lines (PB-1, 2A, and 2B) was partially inhibited by rapamycin, a blocker of some of the signals mediated by IL-2R, but not by cyclosporin A, FK-506, and prednisone, which suppress signals mediated by the T-cell receptor. All the cell lines expressed on their surface the high-affinity IL-2R (alpha, beta, and gamma c chains). They showed basal, constitutive phosphorylation, and coassociation of Jak3, STAT5, and STAT3. Weak basal phosphorylation of IL-2R gamma c was also detected. In regard to SzS, peripheral blood mononuclear cells from 10 of 14 patients showed basal phosphorylation of Jak3, accompanied by phosphorylation of STAT5 in 9 patients, and STAT3 in 4 patients. However, in vitro overnight culture of SzS cells without exogenous cytokines resulted in markedly decreased Jak3 and STAT5 phosphorylation, which could be reversed by stimulation with IL-2. This indicates that the basal phosphorylation of Jak3 and STAT5 in freshly isolated SzS cells is induced rather than constitutive. The basal activation of the Jak/STAT pathway involved in IL-2R signal transduction in ALCL and SzS cells reported here suggests that this pathway may play a role in the pathogenesis of cutaneous T-cell lymphomas, although the mechanism (induced versus constitutive) may vary between different lymphoma types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of functions have been demonstrated for tenascin-C by antibody perturbation assays and in vitro cell culture experiments. However, these results contrast sharply with the lack of any apparent phenotype in mice with a genetic deletion of tenascin-C. A possible explanation for the lack of phenotype would be expression of some altered but functional tenascin-C in the mutant. We report the generation of an independent tenascin-C null mouse and conclude that the original tenascin-C knockout, which is genetically very similar to ours, is also a true null. As found previously, the absence of tenascin-C has no influence on development, adulthood, life span, and fecundity. We have studied in detail two models of wound healing. After axotomy, the regeneration of the sciatic nerve is not altered without tenascin-C. During healing of cutaneous wounds, deposition of collagen I, fibulin-2, and nidogen is identical in mutant and wild-type mice. In contrast. fibronectin appears diminished in wounds of tenascin-C-deficient mice. However, the lack of tenascin-C together with the reduced amount of fibronectin has no influence on the quality of the healing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report explores the mechanism of spontaneous closure of full-thickness skin wounds. The domestic pig, often used as a human analogue for skin wound repair studies, closes these wounds with kinetics similar to those in the guinea pig (mobile skin), even though the porcine dermis on the back is thick and nearly immobile. In the domestic pig, as in the guinea pig, daily full-thickness excisions of the central granulation tissue up to but not including the wound edges in both back and flank wounds do not alter the rate or completeness of wound closure or the final pattern of the scar. A purse-string mechanism of closure was precluded by showing that surgical interruption of wound edge continuity does not alter closure kinetics or wound shape. We conclude that "tightness" of skin is not a key factor nor is the central granulation tissue required for normal wound closure. These data imply that in vitro models such as contraction of isolated granulation tissue or of the cell-populated collagen lattice may not be relevant for understanding the cell biology of in vivo wound closure. Implications for the mechanism for wound closure are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical and physical signals have been reported to mediate wound-induced proteinase inhibitor II (Pin2) gene expression in tomato and potato plants. Among the chemical signals, phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and the peptide systemin represent the best characterized systems. Furthermore, electrical and hydraulic mechanisms have also been postulated as putative Pin2-inducing systemic signals. Most of the chemical agents are able to induce Pin2 gene expression without any mechanical wounding. Thus, ABA, JA, and systemin initiate Pin2 mRNA accumulation in the directly treated leaves and in the nontreated leaves (systemic) that are located distal to the treated ones. ABA-deficient tomato and potato plants do not respond to wounding by accumulation of Pin2 mRNA, therefore providing a suitable model system for analysis of the signal transduction pathway involved in wound-induced gene activation. It was demonstrated that the site of action of JA is located downstream to the site of action of ABA. Moreover, systemin represents one of the initial steps in the signal transduction pathway regulating the wound response. Recently, it was reported that heat treatment and mechanical injury generate electrical signals, which propagate throughout the plant. These signals are capable of inducing Pin2 gene expression in the nontreated leaves of wounded plants. Furthermore, electrical current application to tomato leaves leads to an accumulation of Pin2 mRNA in local and systemic tissues. Examination of photosynthetic parameters (assimilation and transpiration rate) on several types of stimuli suggests that heat-induced Pin2 gene expression is regulated by an alternative pathway from that mediating the electrical current and mechanical wound response.