3 resultados para cultivation in logs
em National Center for Biotechnology Information - NCBI
Resumo:
The Gfi-1 protooncogene encodes a nuclear zinc-finger protein that carries a novel repressor domain, SNAG, and functions as a position- and orientation-independent active transcriptional repressor. The Gfi-1 repressor allows interleukin 2 (IL-2)-dependent T cells to escape G1 arrest induced by IL-2 withdrawal in culture and collaborates with c-myc and pim-1 for the induction of retrovirus-induced lymphomas in animals. Here we show that overexpression of Gfi-1 also inhibits cell death induced by cultivation of IL-2-dependent T-cell lines in IL-2-deficient media. Similarly, induction of Gfi-1 in primary thymocytes from mice carrying a metal-inducible Gfi-1 transgene inhibits cell death induced by cultivation in vitro. The protein and mRNA levels of the proapoptotic regulator Bax are down-regulated by Gfi-1 in both immortalized T-cell lines and primary transgenic thymocytes. The repression is direct and depends on several Gfi-1-binding sites in the p53-inducible Bax promoter. In addition to Bax, Gfi-1 also represses Bak, another apoptosis-promoting member of the Bcl-2 gene family. Therefore, Gfi-1 may inhibit apoptosis by means of its repression of multiple proapoptotic regulators. The antiapoptotic properties of Gfi-1 provide a potential explanation for its strong collaboration with c-myc during oncogenesis.
Resumo:
Epidemics of soil-borne plant disease are characterized by patchiness because of restricted dispersal of inoculum. The density of inoculum within disease patches depends on a sequence comprising local amplification during the parasitic phase followed by dispersal of inoculum by cultivation during the intercrop period. The mechanisms that control size, shape, and persistence have received very little rigorous attention in epidemiological theory. Here we derive a model for dispersal of inoculum in soil by cultivation that takes account into the discrete stochastic nature of the system in time and space. Two parameters, probability of movement and mean dispersal distance, characterize lateral dispersal of inoculum by cultivation. The dispersal parameters are used in combination with the characteristic area and dimensions of host plants to identify criteria that control the shape and size of disease patches. We derive a critical value for the probability of movement for the formation of cross-shaped patches and show that this is independent of the amount of inoculum. We examine the interaction between local amplification of inoculum by parasitic activity and subsequent dilution by dispersal and identify criteria whereby asymptomatic patches may persist as inoculum falls below a threshold necessary for symptoms to appear in the subsequent crop. The model is motivated by the spread of rhizomania, an economically important soil-borne disease of sugar beet. However, the results have broad applicability to a very wide range of diseases that survive as discrete units of inoculum. The application of the model to patch dynamics of weed seeds and local introductions of genetically modified seeds is also discussed.