2 resultados para cs.LG
em National Center for Biotechnology Information - NCBI
Resumo:
The genetic basis of spontaneous melanoma formation in spotted dorsal (Sd) Xiphophorus platyfish–swordtail hybrids has been studied for decades, and is adequately explained by a two-gene inheritance model involving a sex-linked oncogene, Xmrk, and an autosomal tumor suppressor, DIFF. The Xmrk oncogene encodes a receptor tyrosine kinase related to EGFR; the nature of the DIFF tumor suppressor gene is unknown. We analyzed the genetic basis of UV-B-induced melanoma formation in closely related, spotted side platyfish–swordtail hybrids, which carry a different sex-linked pigment pattern locus, Sp. We UV-irradiated spotted side Xiphophorus platyfish–swordtail backcross hybrids to induce melanomas at frequencies 6-fold higher than occur spontaneously in unirradiated control animals. To identify genetic determinants of melanoma susceptibility in this UV-inducible Xiphophorus model, we genotyped individual animals from control and UV-irradiated experimental regimes using allozyme and DNA restriction fragment length polymorphisms and tested for joint segregation of genetic markers with pigmentation phenotype and UV-induced melanoma formation. Joint segregation results show linkage of a CDKN2-like DNA polymorphism with UV-B-induced melanoma formation in these hybrids. The CDKN2-like polymorphism maps to Xiphophorus linkage group V and exhibits recombination fractions with ES1 and MDH2 allozyme markers consistent with previous localization of the DIFF tumor suppressor locus. Our results indicate that the CDKN2-like sequence we have cloned and mapped is a candidate for the DIFF tumor suppressor gene.
Resumo:
KAT1 is a voltage-dependent inward rectifying K+ channel cloned from the higher plant Arabidopsis thaliana [Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. & Gaber, R. F. (1992) Proc. Natl. Acad. Sci. USA 89, 3736-3740]. It is related to the Shaker superfamily of K+ channels characterized by six transmembrane spanning domains (S1-S6) and a putative pore-forming region between S5 and S6 (H5). The 115 region between Pro-247 and Pro-271 in KAT1 contains 14 additional amino acids when compared with Shaker [Aldrich, R. W. (1993) Nature (London) 362, 107-108]. We studied various point mutations introduced into H5 to determine whether voltage-dependent plant and animal K+ channels share similar pore structures. Through heterologous expression in Xenopus oocytes and voltage-clamp analysis combined with phenotypic analysis involving a potassium transport-defective Saccharomyces cerevisiae strain, we investigated the selectivity filter of the mutants and their susceptibility toward inhibition by cesium and calcium ions. With respect to electrophysiological properties, KAT1 mutants segregated into three groups: (i) wild-type-like channels, (ii) channels modified in selectivity and Cs+ or Ca2+ sensitivity, and (iii) a group that was additionally affected in its voltage dependence. Despite the additional 14 amino acids in H5, this motif in KAT1 is also involved in the formation of the ion-conducting pore because amino acid substitutions at Leu-251, Thr-256, Thr-259, and Thr-260 resulted in functional channels with modified ionic selectivity and inhibition. Creation of Ca2+ sensitivity and an increased susceptibility to Cs+ block through mutations within the narrow pore might indicate that both blockers move deeply into the channel. Furthermore, mutations close to the rim of the pore affecting the half-activation potential (U1/2) indicate that amino acids within the pore either interact with the voltage sensor or ion permeation feeds back on gating.