3 resultados para country rock instantaneous point source solld-llquid interface
em National Center for Biotechnology Information - NCBI
Resumo:
Neurotransmitter is released when Ca2+ triggers the fusion of synaptic vesicles with the plasmalemma. To study factors that regulate Ca2+ concentration at the presynaptic active zones of hair cells, we used laser-scanning confocal microscopy with the fluorescent Ca2+ indicator fluo 3. The experimental results were compared with the predictions of a model of presynaptic Ca2+ concentration in which Ca2+ enters a cell through a point source, diffuses from the entry site, and binds to fixed or mobile Ca2+ buffers. The observed time course and magnitude of fluorescence changes under a variety of conditions were well fit when the model included mobile molecules as the only Ca2+ buffer. The results confirm the localized entry of Ca2+ underlying neurotransmitter release and suggest that Ca2+ is cleared from an active zone almost exclusively by mobile buffer.
Resumo:
Eukaryotic Cu,Zn superoxide dismutases (CuZnSODs) are antioxidant enzymes remarkable for their unusually stable β-barrel fold and dimer assembly, diffusion-limited catalysis, and electrostatic guidance of their free radical substrate. Point mutations of CuZnSOD cause the fatal human neurodegenerative disease amyotrophic lateral sclerosis. We determined and analyzed the first crystallographic structure (to our knowledge) for CuZnSOD from a prokaryote, Photobacterium leiognathi, a luminescent symbiont of Leiognathid fish. This structure, exemplifying prokaryotic CuZnSODs, shares the active-site ligand geometry and the topology of the Greek key β-barrel common to the eukaryotic CuZnSODs. However, the β-barrel elements recruited to form the dimer interface, the strategy used to forge the channel for electrostatic recognition of superoxide radical, and the connectivity of the intrasubunit disulfide bond in P. leiognathi CuZnSOD are discrete and strikingly dissimilar from those highly conserved in eukaryotic CuZnSODs. This new CuZnSOD structure broadens our understanding of structural features necessary and sufficient for CuZnSOD activity, highlights a hitherto unrecognized adaptability of the Greek key β-barrel building block in evolution, and reveals that prokaryotic and eukaryotic enzymes diverged from one primordial CuZnSOD and then converged to distinct dimeric enzymes with electrostatic substrate guidance.
Resumo:
This paper provides an overview of the colloquium's discussion session on natural language understanding, which followed presentations by M. Bates [Bates, M. (1995) Proc. Natl. Acad. Sci. USA 92, 9977-9982] and R. C. Moore [Moore, R. C. (1995) Proc. Natl. Acad. Sci. USA 92, 9983-9988]. The paper reviews the dual role of language processing in providing understanding of the spoken input and an additional source of constraint in the recognition process. To date, language processing has successfully provided understanding but has provided only limited (and computationally expensive) constraint. As a result, most current systems use a loosely coupled, unidirectional interface, such as N-best or a word network, with natural language constraints as a postprocess, to filter or resort the recognizer output. However, the level of discourse context provides significant constraint on what people can talk about and how things can be referred to; when the system becomes an active participant, it can influence this order. But sources of discourse constraint have not been extensively explored, in part because these effects can only be seen by studying systems in the context of their use in interactive problem solving. This paper argues that we need to study interactive systems to understand what kinds of applications are appropriate for the current state of technology and how the technology can move from the laboratory toward real applications.