6 resultados para corpus-based translation studies
em National Center for Biotechnology Information - NCBI
Resumo:
Presenilins have been implicated in the genesis of Alzheimer’s disease and in facilitating LIN-12/Notch activity during development. All presenilins have multiple hydrophobic regions that could theoretically span a membrane, and a description of the membrane topology is a crucial step toward deducing the mechanism of presenilin function. Previously, we proposed an eight-transmembrane-domain model for presenilin, based on studies of the Caenorhabditis elegans SEL-12 presenilin. Here, we describe experiments that support the view that two of the hydrophobic regions of SEL-12 function as the seventh and eighth transmembrane domains. Furthermore, we have shown that human presenilin 1 behaves like SEL-12 presenilin when analyzed by our methods. Our results provide additional experimental support for the eight-transmembrane-domain model of presenilin topology.
Resumo:
Organization of proteins into structurally and functionally distinct plasma membrane domains is an essential characteristic of polarized epithelial cells. Based on studies with cultured kidney cells, we have hypothesized that a mechanism for restricting Na/K-ATPase to the basal-lateral membrane involves E-cadherin–mediated cell–cell adhesion and integration of Na/K-ATPase into the Triton X-100–insoluble ankyrin- and spectrin-based membrane cytoskeleton. In this study, we examined the relevance of these in vitro observations to the generation of epithelial cell polarity in vivo during mouse kidney development. Using differential detergent extraction, immunoblotting, and immunofluorescence histochemistry, we demonstrate the following. First, expression of the 220-kDa splice variant of ankyrin-3 correlates with the development of resistance to Triton X-100 extraction for Na/K-ATPase, E-cadherin, and catenins and precedes maximal accumulation of Na/K-ATPase. Second, expression of the 190-kDa slice variant of ankyrin-3 correlates with maximal accumulation of Na/K-ATPase. Third, Na/K-ATPase, ankyrin-3, and fodrin specifically colocalize at the basal-lateral plasma membrane of all epithelial cells in which they are expressed and during all stages of nephrogenesis. Fourth, the relative immunofluorescence staining intensities of Na/K-ATPase, ankyrin-3, and fodrin become more similar during development until they are essentially identical in adult kidney. Thus, renal epithelial cells in vivo regulate the accumulation of E-cadherin–mediated adherens junctions, the membrane cytoskeleton, and Na/K-ATPase through sequential protein expression and assembly on the basal-lateral membrane. These results are consistent with a mechanism in which generation and maintenance of polarized distributions of these proteins in vivo and in vitro involve cell–cell adhesion, assembly of the membrane cytoskeleton complex, and concomitant integration and retention of Na/K-ATPase in this complex.
Resumo:
The availability of cysteine is thought to be the rate limiting factor for synthesis of the tripeptide glutathione (GSH), based on studies in rodents. GSH status is compromised in various disease states and by certain medications leading to increased morbidity and poor survival. To determine the possible importance of dietary cyst(e)ine availability for whole blood glutathione synthesis in humans, we developed a convenient mass spectrometric method for measurement of the isotopic enrichment of intact GSH and then applied it in a controlled metabolic study. Seven healthy male subjects received during two separate 10-day periods an l-amino acid based diet supplying an adequate amino acid intake or a sulfur amino acid (SAA) (methionine and cysteine) free mixture (SAA-free). On day 10, l-[1-13C]cysteine was given as a primed, constant i.v. infusion (3μmol⋅kg−1⋅h−1) for 6 h, and incorporation of label into whole blood GSH determined by GC/MS selected ion monitoring. The fractional synthesis rate (mean ± SD; day-1) of whole blood GSH was 0.65 ± 0.13 for the adequate diet and 0.49 ± 0.13 for the SAA-free diet (P < 0.01). Whole blood GSH was 1,142 ± 243 and 1,216 ± 162 μM for the adequate and SAA-free periods (P > 0.05), and the absolute rate of GSH synthesis was 747 ± 216 and 579 ± 135 μmol⋅liter−1⋅day−1, respectively (P < 0.05). Thus, a restricted dietary supply of SAA slows the rate of whole blood GSH synthesis and diminishes turnover, with maintenance of the GSH concentration in healthy subjects.
Resumo:
Anticardiolipin (anti-CL) antibodies, diagnostic for antiphospholipid antibody syndrome, are associated with increased risks of venous and arterial thrombosis. Because CL selectively enhances activated protein C/protein S-dependent anticoagulant activities in purified systems and because CL is not known to be a normal plasma component, we searched for CL in plasma. Plasma lipid extracts [chloroform/methanol (2:1, vol/vol)] were subjected to analyses by using TLC, analytical HPLC, and MS. A plasma lipid component was purified that was indistinguishable from reference CL (M:1448). When CL in 40 fasting plasma lipid extracts (20 males, 20 females) was quantitated by using HPLC, CL (mean ± SD) was 14.9 ± 3.7 μg/ml (range 9.1 to 24.2) and CL was not correlated with phosphatidylserine (3.8 ± 1.7 μg/ml), phosphatidylethanolamine (64 ± 20 μg/ml), or choline-containing phospholipid (1,580 ± 280 μg/ml). Based on studies of fasting blood donors, CL (≥94%) was recovered in very low density, low density, and high density lipoproteins (11 ± 5.3%, 67 ± 11.0%, and 17 ± 10%, respectively), showing that the majority of plasma CL (67%) is in low density lipoprotein. Analysis of relative phospholipid contents of lipoproteins indicated that high density lipoprotein is selectively enriched in CL and phosphatidylethanolamine. These results shows that CL is a normal plasma component and suggest that the epitopes of antiphospholipid antibodies could include CL or oxidized CL in lipoproteins or in complexes with plasma proteins (e.g., β2-glycoprotein I, prothrombin, protein C, or protein S) or with platelet or endothelial surface proteins.
Resumo:
This paper surveys some of the fundamental problems in natural language (NL) understanding (syntax, semantics, pragmatics, and discourse) and the current approaches to solving them. Some recent developments in NL processing include increased emphasis on corpus-based rather than example- or intuition-based work, attempts to measure the coverage and effectiveness of NL systems, dealing with discourse and dialogue phenomena, and attempts to use both analytic and stochastic knowledge. Critical areas for the future include grammars that are appropriate to processing large amounts of real language; automatic (or at least semi-automatic) methods for deriving models of syntax, semantics, and pragmatics; self-adapting systems; and integration with speech processing. Of particular importance are techniques that can be tuned to such requirements as full versus partial understanding and spoken language versus text. Portability (the ease with which one can configure an NL system for a particular application) is one of the largest barriers to application of this technology.
Resumo:
The field of natural language processing (NLP) has seen a dramatic shift in both research direction and methodology in the past several years. In the past, most work in computational linguistics tended to focus on purely symbolic methods. Recently, more and more work is shifting toward hybrid methods that combine new empirical corpus-based methods, including the use of probabilistic and information-theoretic techniques, with traditional symbolic methods. This work is made possible by the recent availability of linguistic databases that add rich linguistic annotation to corpora of natural language text. Already, these methods have led to a dramatic improvement in the performance of a variety of NLP systems with similar improvement likely in the coming years. This paper focuses on these trends, surveying in particular three areas of recent progress: part-of-speech tagging, stochastic parsing, and lexical semantics.