87 resultados para copyright, fair use

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although infection by primary HIV type 1 (HIV-1) isolates normally requires the functional interaction of the viral envelope protein with both CD4 and the CCR-5 coreceptor, a subset of such isolates also are able to use the distinct CCR-3 receptor. By analyzing the ability of a series of wild-type and chimeric HIV-1 envelope proteins to mediate CCR-3-dependent infection, we have determined that CCR-3 tropism maps to the V1 and V2 variable region of envelope. Although substitution of the V1/V2 region of a CCR-3 tropic envelope into the context of a CCR-5 tropic envelope is both necessary and sufficient to confer CCR-3 tropism, this same substitution has no phenotypic effect when inserted into a CXCR-4 tropic HIV-1 envelope context. However, this latter chimera acquires both CCR-3 and CCR-5 tropism when a CCR-5 tropic V3 loop sequence also is introduced. These data demonstrate that the V1/2 region of envelope can, like the V3 loop region, encode a particular coreceptor requirement and suggest that a functional envelope:CCR-3 interaction may depend on the cooperative interaction of CCR-3 with both the V1/V2 and the V3 region of envelope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonobese diabetic (NOD) mice develop insulin-dependent diabetes mellitus due to autoimmune T lymphocyte-mediated destruction of pancreatic β cells. Although both major histocompatibility complex class I-restricted CD8+ and class II-restricted CD4+ T cell subsets are required, the specific role each subset plays in the pathogenic process is still unclear. Here we show that class I-dependent T cells are required for all but the terminal stages of autoimmune diabetes development. To characterize the diabetogenic CD8+ T cells responsible, we isolated and propagated in vitro CD8+ T cells from the earliest insulitic lesions of NOD mice. They were cytotoxic to NOD islet cells, restricted to H-2Kd, and showed a diverse T cell receptor β chain repertoire. In contrast, their α chain repertoire was more restricted, with a recurrent amino acid sequence motif in the complementarity-determining region 3 loop and a prevalence of Vα17 family members frequently joined to the Jα42 gene segment. These results suggest that a number of the CD8+ T cells participating in the initial phase of autoimmune β cell destruction recognize a common structural component of Kd/peptide complexes on pancreatic β cells, possibly a single peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of molecular genetics for introducing fluorescent molecules enables the use of donor–donor energy migration to determine intramolecular distances in a variety of proteins. This approach can be applied to examine the overall molecular dimensions of proteins and to investigate structural changes upon interactions with specific target molecules. In this report, the donor–donor energy migration method is demonstrated by experiments with the latent form of plasminogen activator inhibitor type 1. Based on the known x-ray structure of plasminogen activator inhibitor type 1, three positions forming the corners of a triangle were chosen. Double Cys substitution mutants (V106C-H185C, H185C-M266C, and M266C-V106C) and corresponding single substitution mutants (V106C, H185C, and M266C) were created and labeled with a sulfhydryl specific derivative of BODIPY (=the D molecule). The side lengths of this triangle were obtained from analyses of the experimental data. The analyses account for the local anisotropic order and rotational motions of the D molecules, as well as for the influence of a partial DD-labeling. The distances, as determined from x-ray diffraction, between the Cα-atoms of the positions V106C–H185C, H185C–M266C, and M266C–V106C were 60.9, 30.8, and 55.1 Å, respectively. These are in good agreement with the distances of 54 ± 4, 38 ± 3, and 55 ± 3 Å, as determined between the BODIPY groups attached via linkers to the same residues. Although the positions of the D-molecules and the Cα-atoms physically cannot coincide, there is a reasonable agreement between the methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution of several individual ribozyme⋅substrate base pairs to binding and catalysis has been investigated using hammerhead ribozyme substrates that were truncated at their 3′ or 5′ ends. The base pairs at positions 1.1–2.1 and 15.2–16.2, which flank the conserved core, each contribute 104-fold in the chemical step, without affecting substrate binding. In contrast, base pairs distal to the core contribute to substrate binding but have no effect on the chemical step. These results suggest a “fraying model” in which each ribozyme⋅substrate helix can exist in either an unpaired (“open”) state or a helical (“closed”) state, with the closed state required for catalysis. The base pairs directly adjacent to the conserved core contribute to catalysis by allowing the closed state to form. Once the number of base pairs is sufficient to ensure that the closed helical state predominates, additional residues provide stabilization of the helix, and therefore increase binding, but have no further effect on the chemical step. Remarkably, the >5 kcal/mol free energy contribution to catalysis from each of the internal base pairs is considerably greater than the free energy expected for formation of a base pair. It is suggested that this unusually large energetic contribution arises because free energy that is typically lost in constraining residues within a base pair is expressed in the transition state, where it is used for positioning. This extends the concept of “intrinsic binding energy” from protein to RNA enzymes, suggesting that intrinsic binding energy is a fundamental feature of biological catalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive immunization has emerged as a new tool for the study of biological catalysis. A powerful application resulted in catalytic antibodies that use an enamine mechanism akin to that used by the class I aldolases. With regard to the evolution of enzyme mechanisms, we investigated the utility of an enamine pathway for the allylic rearrangement exemplified by Δ5-3-ketosteroid isomerase (KSI; EC 5.3.3.1). Our aldolase antibodies were found to catalyze the isomerization of both steroid model compounds and steroids. The kinetic and chemical studies showed that the antibodies afforded rate accelerations up to a factor of 104 by means of an enamine mechanism in which imine formation was the rate-determining step. In light of our observations and the enzyme studies by other workers, we suggest that an enamine pathway could have been an early, viable KSI mechanism. Although this pathway is amenable to optimization for increased catalytic power, it appears that certain factors precluded its evolution in known KSI enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, a new method to analyze biological nonstationary stochastic variables has been presented. The method is especially suitable to analyze the variation of one biological variable with respect to changes of another variable. Here, it is illustrated by the change of the pulmonary blood pressure in response to a step change of oxygen concentration in the gas that an animal breathes. The pressure signal is resolved into the sum of a set of oscillatory intrinsic mode functions, which have zero “local mean,” and a final nonoscillatory mode. With this device, we obtain a set of “mean trends,” each of which represents a “mean” in a definitive sense, and together they represent the mean trend systematically with different degrees of oscillatory content. Correspondingly, the oscillatory content of the signal about any mean trend can be represented by a set of partial sums of intrinsic mode functions. When the concept of “indicial response function” is used to describe the change of one variable in response to a step change of another variable, we now have a set of indicial response functions of the mean trends and another set of indicial response functions to describe the energy or intensity of oscillations about each mean trend. Each of these can be represented by an analytic function whose coefficients can be determined by a least-squares curve-fitting procedure. In this way, experimental results are stated sharply by analytic functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the 44Ca/40Ca isotopic ratio, the total range of variation observed is 5.5‰, and as much as 4‰ variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fall migratory monarch butterflies, tested for their directional responses to magnetic cues under three conditions, amagnetic, normal, and reversed magnetic fields, showed three distinct patterns. In the absence of a magnetic field, monarchs lacked directionality as a group. In the normal magnetic field, monarchs oriented to the southwest with a group pattern typical for migrants. When the horizontal component of the magnetic field was reversed, the butterflies oriented to the northeast. In contrast, nonmigratory monarchs lacked directionality in the normal magnetic field. The results are a direct demonstration of magnetic compass orientation in migratory insects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used plants as an in vivo pathogenesis model for the identification of virulence factors of the human opportunistic pathogen Pseudomonas aeruginosa. Nine of nine TnphoA mutant derivatives of P. aeruginosa strain UCBPP-PA14 that were identified in a plant leaf assay for less pathogenic mutants also exhibited significantly reduced pathogenicity in a burned mouse pathogenicity model, suggesting that P. aeruginosa utilizes common strategies to infect both hosts. Seven of these nine mutants contain TnphoA insertions in previously unknown genes. These results demonstrate that an alternative nonvertebrate host of a human bacterial pathogen can be used in an in vivo high throughput screen to identify novel bacterial virulence factors involved in mammalian pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of channel inactivation in the molecular mechanism of calcium (Ca2+) channel block by phenylalkylamines (PAA) was analyzed by designing mutant Ca2+ channels that carry the high affinity determinants of the PAA receptor site [Hockerman, G. H., Johnson, B. D., Scheuer, T., and Catterall, W. A. (1995) J. Biol. Chem. 270, 22119–22122] but inactivate at different rates. Use-dependent block by PAAs was studied after expressing the mutant Ca2+ channels in Xenopus oocytes. Substitution of single putative pore-orientated amino acids in segment IIIS6 by alanine (F-1499-A, F-1500-A, F-1510-A, I-1514-A, and F-1515-A) gradually slowed channel inactivation and simultaneously reduced inhibition of barium currents (IBa) by (−)D600 upon depolarization by 100 ms steps at 0.1 Hz. This apparent reduction in drug sensitivity was only evident if test pulses were applied at a low frequency of 0.1 Hz and almost disappeared at the frequency of 1 Hz. (−)D600 slowed IBa recovery after maintained membrane depolarization (1–3 sec) to a comparable extent in all channel constructs. A drug-induced delay in the onset of IBa recovery from inactivation suggests that PAAs promote the transition to a deep inactivated channel conformation. These findings indicate that apparent PAA sensitivity of Ca2+ channels is not only defined by drug interaction with its receptor site but also crucially dependent on intrinsic gating properties of the channel molecule. A molecular model for PAA-Ca2+ channel interaction that accounts for the relationship between drug induced inactivation and channel block by PAA is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assembly of several inner membrane proteins—leader peptidase (Lep), a Lep derivative (Lep-inv) that inserts with an inverted topology compared with the wild-type protein, the phage M13 procoat protein, and a procoat derivative (H1-procoat) with the hydrophobic core of the signal peptide replaced by a stretch from the first transmembrane segment in Lep—has been studied in vitro and in Escherichia coli strains that are conditional for the expression of either the 54 homologue (Ffh) or 4.5S RNA, which are the two components of the E. coli signal recognition particle (SRP), or SecE, an essential core component of the E. coli preprotein translocase. Membrane insertion has also been tested in a SecB null strain. Lep, Lep-inv, and H1-procoat require SRP for correct assembly into the inner membrane; in contrast, we find that wild-type procoat does not. Lep and, surprisingly, Lep-inv and H1-procoat fail to insert properly when SecE is depleted, whereas insertion of wild-type procoat is unaffected under these conditions. None of the proteins depend on SecB for assembly. These observations indicate that inner membrane proteins can assemble either by a mechanism in which SRP delivers the protein at the preprotein translocase or by what appears to be a direct integration into the lipid bilayer. The observed change in assembly mechanism when the hydrophobicity of the procoat signal peptide is increased demonstrates that the assembly of an inner membrane protein can be rerouted between different pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of past land use on the present-day diversity of stream invertebrates and fish was investigated by comparing watersheds with different land-use history. Whole watershed land use in the 1950s was the best predictor of present-day diversity, whereas riparian land use and watershed land use in the 1990s were comparatively poor indicators. Our findings indicate that past land-use activity, particularly agriculture, may result in long-term modifications to and reductions in aquatic diversity, regardless of reforestation of riparian zones. Preservation of habitat fragments may not be sufficient to maintain natural diversity in streams, and maintenance of such biodiversity may require conservation of much or all of the watershed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Psorospermin is a plant natural product that shows significant in vivo activity against P388 mouse leukemia. The molecular basis for this selectivity is unknown, although psorospermin has been demonstrated to intercalate into DNA and alkylate N7 of guanine. Significantly, the alkylation reactivity of psorospermin at specific sites on DNA increased 25-fold in the presence of topoisomerase II. In addition, psorospermin trapped the topoisomerase II-cleaved complex formation at the same site. These results imply that the efficacy of psorospermin is related to its interaction with the topoisomerase II–DNA complex. Because thermal treatment of (N7 guanine)–DNA adducts leads to DNA strand breakage, we were able to determine the site of alkylation of psorospermin within the topoisomerase II gate site and infer that intercalation takes place at the gate site between base pairs at the +1 and +2 positions. These results provide not only additional mechanistic information on the mode of action of the anticancer agent psorospermin but also structural insights into the design of an additional class of topoisomerase II poisons. Because the alkylation site for psorospermin in the presence of topoisomerase II can be assigned unambiguously and the intercalation site inferred, this drug is a useful probe for other topoisomerase poisons where the sites for interaction are less well defined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have generated null mutant mice that lack expression of all isoforms encoded by the trkC locus. These mice display a behavioral phenotype characterized by a loss of proprioceptive neurons. Neuronal counts of sensory ganglia in the trkC mutant mice reveal less severe losses than those in NT-3 null mutant mice, strongly suggesting that NT-3, in vivo, may signal through receptors other than trkC. Mice lacking either NT-3 or all trkC receptor isoforms die in the early postnatal period. Histological examination of trkC-deficient mice reveals severe cardiac defects such as atrial and ventricular septal defects, and valvular defects including pulmonic stenosis. Formation of these structures during development is dependent on cardiac neural crest function. The similarities in cardiac defects observed in the trkC and NT-3 null mutant mice indicate that the trkC receptor mediates most NT-3 effects on the cardiac neural crest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell activation rapidly and transiently regulates the functional activity of integrin receptors. Stimulation of CD3/T cell receptor, CD2 or CD28, as well as activation with phorbol esters, can induce within minutes an increase in β1 integrin-mediated adhesion of T cells to fibronectin. In this study, we have produced and utilized a mutant of the Jurkat T cell line, designated A1, that lacks protein and mRNA expression of the β1 integrin subunit but retains normal levels of CD2, CD3, and CD28 on the cell surface. Activation-dependent adhesion of A1 cells to fibronectin could be restored upon transfection of a wild-type human β1 integrin cDNA. Adhesion induced by phorbol 12-myristate 13-acetate-, CD3-, CD2-, and CD28 stimulation did not occur if the carboxy-terminal five amino acids of the β1 tail were truncated or if either of two well-conserved NPXY motifs were deleted. Scanning alanine substitutions of the carboxy-terminal five amino acids demonstrated a critical role for the tyrosine residue at position 795. The carboxy-terminal truncation and the NPXY deletions also reduced adhesion induced by direct stimulation of the β1 integrin with the activating β1 integrin-specific mAb TS2/16, although the effects were not as dramatic as observed with the other integrin-activating signals. These results demonstrate a vital role for the amino-terminal NPXY motif and the carboxy-terminal end of the β1 integrin cytoplasmic domain in activation-dependent regulation of integrin-mediated adhesion in T cells. Furthermore, the A1 cell line represents a valuable new cellular reagent for the analysis of β1 integrin structure and function in human T cells.