7 resultados para coping and adaptation
em National Center for Biotechnology Information - NCBI
Resumo:
Bacterial chemotaxis is widely studied because of its accessibility and because it incorporates processes that are important in a number of sensory systems: signal transduction, excitation, adaptation, and a change in behavior, all in response to stimuli. Quantitative data on the change in behavior are available for this system, and the major biochemical steps in the signal transduction/processing pathway have been identified. We have incorporated recent biochemical data into a mathematical model that can reproduce many of the major features of the intracellular response, including the change in the level of chemotactic proteins to step and ramp stimuli such as those used in experimental protocols. The interaction of the chemotactic proteins with the motor is not modeled, but we can estimate the degree of cooperativity needed to produce the observed gain under the assumption that the chemotactic proteins interact directly with the motor proteins.
Resumo:
Cultural inheritance can be considered as a mechanism of adaptation made possible by communication, which has reached its greatest development in humans and can allow long-term conservation or rapid change of culturally transmissible traits depending on circumstances and needs. Conservativeness/flexibility is largely modulated by mechanisms of sociocultural transmission. An analysis was carried out by testing the fit of three models to 47 cultural traits (classified in six groups) in 277 African societies. Model A (demic diffusion) is conservation over generations, as shown by correlations of cultural traits with language, used as a measure of historical connection. Model B (environmental adaptation) is measured by correlation to the natural environment. Model C (cultural diffusion) is the spread to neighbors by social contact in an epidemic-like fashion and was tested by measuring the tightness of geographic clustering of the traits. Most traits examined, in particular those affecting family structure and kinship, showed great conservation over generations, as shown by the fit of model A. They are most probably transmitted by family members. This is in agreement with the theoretical demonstration that cultural transmission in the family (vertical) is the most conservative one. Some traits show environmental effects, indicating the importance of adaptation to physical environment. Only a few of the 47 traits showed tight geographic clustering indicating that their spread to nearest neighbors follows model C, as is usually the case for transmission among unrelated people (called horizontal transmission).
Resumo:
Several basic olfactory tasks must be solved by highly olfactory animals, including background suppression, multiple object separation, mixture separation, and source identification. The large number N of classes of olfactory receptor cells—hundreds or thousands—permits the use of computational strategies and algorithms that would not be effective in a stimulus space of low dimension. A model of the patterns of olfactory receptor responses, based on the broad distribution of olfactory thresholds, is constructed. Representing one odor from the viewpoint of another then allows a common description of the most important basic problems and shows how to solve them when N is large. One possible biological implementation of these algorithms uses action potential timing and adaptation as the “hardware” features that are responsible for effective neural computation.
Resumo:
It is now accepted that hippocampal lesions impair episodic memory. However, the precise functional role of the hippocampus in episodic memory remains elusive. Recent functional imaging data implicate the hippocampus in processing novelty, a finding supported by human in vivo recordings and event-related potential studies. Here we measure hippocampal responses to novelty, using functional MRI (fMRI), during an item-learning paradigm generated from an artificial grammar system. During learning, two distinct types of novelty were periodically introduced: perceptual novelty, pertaining to the physical characteristics of stimuli (in this case visual characteristics), and exemplar novelty, reflecting semantic characteristics of stimuli (in this case grammatical status within a rule system). We demonstrate a left anterior hippocampal response to both types of novelty and adaptation of these responses with stimulus familiarity. By contrast to these novelty effects, we also show bilateral posterior hippocampal responses with increasing exemplar familiarity. These results suggest a functional dissociation within the hippocampus with respect to the relative familiarity of study items. Neural responses in anterior hippocampus index generic novelty, whereas posterior hippocampal responses index familiarity to stimuli that have behavioral relevance (i.e., only exemplar familiarity). These findings add to recent evidence for functional segregation within the human hippocampus during learning.
Resumo:
The fate of redundant genes resulting from genome duplication is poorly understood. Previous studies indicated that ribosomal RNA genes from one parental origin are epigenetically silenced during interspecific hybridization or polyploidization. Regulatory mechanisms for protein-coding genes in polyploid genomes are unknown, partly because of difficulty in studying expression patterns of homologous genes. Here we apply amplified fragment length polymorphism (AFLP)–cDNA display to perform a genome-wide screen for orthologous genes silenced in Arabidopsis suecica, an allotetraploid derived from Arabidopsis thaliana and Cardaminopsis arenosa. We identified ten genes that are silenced from either A. thaliana or C. arenosa origin in A. suecica and located in four of the five A. thaliana chromosomes. These genes represent a variety of RNA and predicted proteins including four transcription factors such as TCP3. The silenced genes in the vicinity of TCP3 are hypermethylated and reactivated by blocking DNA methylation, suggesting epigenetic regulation is involved in the expression of orthologous genes in polyploid genomes. Compared with classic genetic mutations, epigenetic regulation may be advantageous for selection and adaptation of polyploid species during evolution and development.
Resumo:
The whole genome sequence (1.83 Mbp) of Haemophilus influenzae strain Rd was searched to identify tandem oligonucleotide repeat sequences. Loss or gain of one or more nucleotide repeats through a recombination-independent slippage mechanism is known to mediate phase variation of surface molecules of pathogenic bacteria, including H. influenzae. This facilitates evasion of host defenses and adaptation to the varying microenvironments of the host. We reasoned that iterative nucleotides could identify novel genes relevant to microbe-host interactions. Our search of the Rd genome sequence identified 9 novel loci with multiple (range 6-36, mean 22) tandem tetranucleotide repeats. All were found to be located within putative open reading frames and included homologues of hemoglobin-binding proteins of Neisseria, a glycosyltransferase (IgtC gene product) of Neisseria, and an adhesin of Yersinia. These tetranucleotide repeat sequences were also shown to be present in two other epidemiologically different H. influenzae type b strains, although the number and distribution of repeats was different. Further characterization of the IgtC gene showed that it was involved in phenotypic switching of a lipopolysaccharide epitope and that this variable expression was associated with changes in the number of tetranucleotide repeats. Mutation of IgtC resulted in attenuated virulence of H. influenzae in an infant rat model of invasive infection. These data indicate the rapidity, economy, and completeness with which whole genome sequences can be used to investigate the biology of pathogenic bacteria.