3 resultados para copal rosin varnish

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most anthropoid primates are slow to develop, their offspring are mostly single births, and the interbirth intervals are long. To maintain a stable population, parents must live long enough to sustain the serial production of a sufficient number of young to replace themselves while allowing for the death of offspring before they can reproduce. However, in many species there is a large differential between the sexes in the care provided to offspring. Therefore, we hypothesize that in slowly developing species with single births, the sex that bears the greater burden in the care of offspring will tend to survive longer. Males are incapable of gestating infants and lactating, but in several species fathers carry their offspring for long periods. We predict that females tend to live longer than males in the species where the mother does most or all of the care of offspring, that there is no difference in survival between the sexes in species in which both parents participate about equally in infant care, and that in the species where the father does a greater amount of care than the mother, males tend to live longer. The hypothesis is supported by survival data for males and females in anthropoid primate species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grand fir (Abies grandis Lindl.) has been developed as a model system for the study of wound-induced oleoresinosis in conifers as a response to insect attack. Oleoresin is a roughly equal mixture of turpentine (85% monoterpenes [C10] and 15% sesquiterpenes [C15]) and rosin (diterpene [C20] resin acids) that acts to seal wounds and is toxic to both invading insects and their pathogenic fungal symbionts. The dynamic regulation of wound-induced oleoresin formation was studied over 29 d at the enzyme level by in vitro assay of the three classes of synthases directly responsible for the formation of monoterpenes, sesquiterpenes, and diterpenes from the corresponding C10, C15, and C20 prenyl diphosphate precursors, and at the gene level by RNA-blot hybridization using terpene synthase class-directed DNA probes. In overall appearance, the shapes of the time-course curves for all classes of synthase activities are similar, suggesting coordinate formation of all of the terpenoid types. However, closer inspection indicates that the monoterpene synthases arise earlier, as shown by an abbreviated time course over 6 to 48 h. RNA-blot analyses indicated that the genes for all three classes of enzymes are transcriptionally activated in response to wounding, with the monoterpene synthases up-regulated first (transcripts detectable 2 h after wounding), in agreement with the results of cell-free assays of monoterpene synthase activity, followed by the coordinately regulated sesquiterpene synthases and diterpene synthases (transcription beginning on d 3–4). The differential timing in the production of oleoresin components of this defense response is consistent with the immediate formation of monoterpenes to act as insect toxins and their later generation at solvent levels for the mobilization of resin acids responsible for wound sealing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grand fir (Abies grandis) saplings and derived cell cultures are useful systems for studying the regulation of defensive oleoresinosis in conifers, a process involving both the constitutive accumulation of resin (pitch) in specialized secretory structures and the induced production of monoterpene olefins (turpentine) and diterpene resin acids (rosin) by nonspecialized cells at the site of injury. The pathways and enzymes involved in monoterpene and diterpene resin acid biosynthesis are described, as are the coinduction kinetics following stem injury as determined by resin analysis, enzyme activity measurements, and immunoblotting. The effects of seasonal development, light deprivation, and water stress on constitutive and wound-induced oleoresinosis are reported. Future efforts, including a PCR-based cloning strategy, to define signal transduction in the wound response and the resulting gene activation processes are delineated.