9 resultados para control switch
em National Center for Biotechnology Information - NCBI
Resumo:
DsrA is an 87-nucleotide regulatory RNA of Escherichia coli that acts in trans by RNA–RNA interactions with two different mRNAs, hns and rpoS. DsrA has opposite effects on these transcriptional regulators. H-NS levels decrease, whereas RpoS (σs) levels increase. Here we show that DsrA enhances hns mRNA turnover yet stabilizes rpoS mRNA, either directly or via effects on translation. Computational and RNA footprinting approaches led to a refined structure for DsrA, and a model in which DsrA interacts with the hns mRNA start and stop codon regions to form a coaxial stack. Analogous bipartite interactions exist in eukaryotes, albeit with different regulatory consequences. In contrast, DsrA base pairs in discrete fashion with the rpoS RNA translational operator. Thus, different structural configurations for DsrA lead to opposite regulatory consequences for target RNAs.
Resumo:
The N-methyl-d-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.
Resumo:
SoxR is a transcription activator governing a cellular response to superoxide and nitric oxide in Escherichia coli. SoxR protein is a homodimer, and each monomer has a redox-active [2Fe–2S] cluster. Oxidation and reduction of the [2Fe–2S] clusters can reversibly activate and inactivate SoxR transcriptional activity. Here, we use electron paramagnetic resonance spectroscopy to follow the redox-switching process of SoxR protein in vivo. SoxR [2Fe–2S] clusters were in the fully reduced state during normal aerobic growth, but were completely oxidized after only 2-min aerobic exposure of the cells to superoxide-generating agents such as paraquat. The oxidized SoxR [2Fe–2S] clusters were rapidly re-reduced in vivo once the oxidative stress was removed. The in vivo kinetics of SoxR [2Fe–2S] cluster oxidation and reduction exactly paralleled the increase and decrease of transcription of soxS, the target gene for SoxR. The kinetic analysis also revealed that an oxidative stress-linked decrease in soxS mRNA stability contributes to the rapid attainment of a new steady state after SoxR activation. Such a redox stress-related change in soxS mRNA stability may represent a new level of biological control.
Resumo:
The conserved two-component regulatory system GacS/GacA determines the expression of extracellular products and virulence factors in a variety of Gram-negative bacteria. In the biocontrol strain CHA0 of Pseudomonas fluorescens, the response regulator GacA is essential for the synthesis of extracellular protease (AprA) and secondary metabolites including hydrogen cyanide. GacA was found to exert its control on the hydrogen cyanide biosynthetic genes (hcnABC) and on the aprA gene indirectly via a posttranscriptional mechanism. Expression of a translational hcnA′-′lacZ fusion was GacA-dependent whereas a transcriptional hcnA-lacZ fusion was not. A distinct recognition site overlapping with the ribosome binding site appears to be primordial for GacA-steered regulation. GacA-dependence could be conferred to the Escherichia coli lacZ mRNA by a 3-bp substitution in the ribosome binding site. The gene coding for the global translational repressor RsmA of P. fluorescens was cloned. RsmA overexpression mimicked partial loss of GacA function and involved the same recognition site, suggesting that RsmA is a downstream regulatory element of the GacA control cascade. Mutational inactivation of the chromosomal rsmA gene partially suppressed a gacS defect. Thus, a central, GacA-dependent switch from primary to secondary metabolism may operate at the level of translation.
Resumo:
The onset of X inactivation coincides with accumulation of Xist RNA along the future inactive X chromosome. A recent hypothesis proposed that accumulation is initiated by a promoter switch within Xist. In this hypothesis, an upstream promoter (P0) produces an unstable transcript, while the known downstream promoter (P1) produces a stable RNA. To test this hypothesis, we examined expression and half-life of Xist RNA produced from an Xist transgene lacking P0 but retaining P1. We confirm the previous finding that P0 is dispensable for Xist expression in undifferentiated cells and that P1 can be used in both undifferentiated and differentiated cells. Herein, we show that Xist RNA initiated at P1 is unstable and does not accumulate. Further analysis indicates that the transcriptional boundary at P0 does not represent the 5′ end of a distinct Xist isoform. Instead, P0 is an artifact of cross-amplification caused by a pseudogene of the highly expressed ribosomal protein S12 gene Rps12. Using strand-specific techniques, we find that transcription upstream of P1 originates from the DNA strand opposite Xist and represents the 3′ end of the antisense Tsix RNA. Thus, these data do not support the existence of a P0 promoter and suggest that mechanisms other than switching of functionally distinct promoters control the up-regulation of Xist.
Resumo:
β1,4-Galactosyltransferase (β4GalT-I) participates in both glycoconjugate biosynthesis (ubiquitous activity) and lactose biosynthesis (mammary gland-specific activity). In somatic tissues, transcription of the mammalian β4GalT-I gene results in a 4.1-kb mRNA and a 3.9-kb mRNA as a consequence of initiation at two start sites separated by ≈200 bp. In the mammary gland, coincident with the increased β4GalT-I enzyme level (≈50-fold) required for lactose biosynthesis, there is a switch from the 4.1-kb start site to the preferential use of the 3.9-kb start site, which is governed by a stronger tissue-restricted promoter. The use of the 3.9-kb start site results in a β4GalT-I transcript in which the 5′- untranslated region (UTR) has been truncated from ≈175 nt to ≈28 nt. The 5′-UTR of the 4.1-kb transcript [UTR(4.1)] is predicted to contain extensive secondary structure, a feature previously shown to reduce translational efficiency of an mRNA. In contrast, the 5′-UTR of the 3.9-kb mRNA [UTR(3.9)] lacks extensive secondary structure; thus, this transcript is predicted to be more efficiently translated relative to the 4.1-kb mRNA. To test this prediction, constructs were assembled in which the respective 5′-UTRs were fused to the luciferase-coding sequence and enzyme levels were determined after translation in vitro and in vivo. The luciferase mRNA containing the truncated UTR(3.9) was translated more efficiently both in vitro (≈14-fold) and in vivo (3- to 5-fold) relative to the luciferase mRNA containing the UTR(4.1). Consequently, in addition to control at the transcriptional level, β4GalT-I enzyme levels are further augmented in the lactating mammary gland as a result of translational control.
Resumo:
Fine finger and hand movements in humans, monkeys, and rats are under the direct control of the corticospinal tract (CST). CST lesions lead to severe, long-term deficits of precision movements. We transected completely both CSTs in adult rats and treated the animals for 2 weeks with an antibody that neutralized the central nervous system neurite growth inhibitory protein Nogo-A (mAb IN-1). Anatomical studies of the rubrospinal tracts showed that the number of collaterals innervating the cervical spinal cord doubled in the mAb IN-1- but not in the control antibody-treated animals. Precision movements of the forelimb and fingers were severely impaired in the controls, but almost completely recovered in the mAb IN-1-treated rats. Low threshold microstimulation of the motor cortex induced a rapid forelimb electromyography response that was mediated by the red nucleus in the mAb IN-1 animals but not in the controls. These findings demonstrate an unexpectedly high capacity of the adult central nervous system motor system to sprout and reorganize in a targeted and functionally meaningful way.
Resumo:
Leukemia inhibitory factor (LIF) promotes differentiated cell function in several systems. We recently reported LIF and LIF receptor expression in human fetal pituitary corticotrophs in vivo and demonstrated LIF stimulation of adrenocorticotrophin (ACTH) transcription in vitro, suggesting a role for LIF in corticotroph development. We therefore assessed the action of LIF on proliferating murine corticotroph cells (AtT20). LIF impairs proliferation of AtT20 cells (25% reduction versus control, P < 0.03), while simultaneously enhancing ACTH secretion (2-fold, P < 0.001) and augmenting ACTH responsiveness to corticotrophin-releasing hormone (CRH) action (4-fold, P < 0.001). This attenuation of cell growth is due to a block of cell cycle progression from G1 into S phase, as measured by flow cytometric analysis (24 +/- 0.8 versus 11.57 +/- 1.5, P < 0.001). Using bromodeoxyuridine incorporation assays, loss of cells in S phase was confirmed (25 +/- 0.08 to 9.4 +/- 1.4, P < 0.008). In contrast, CRH induced the G2/M phase (3.6 +/- 0.2 to 15.4 +/- 3, P < 0.001). This effect was blunted by LIF (P < 0.001 versus CRH alone). Cyclin A mRNA levels, which decline in S phase, were stimulated 3.5-fold by LIF and markedly suppressed by CRH. These results indicate a LIF-induced cell cycle block occurring at G1/S in corticotroph cells. Thus, LIF reduces proliferation, enhances ACTH secretion, and potentiates effects of CRH on ACTH secretion while blocking effects of CRH on the cell cycle. Responses of these three markers of differentiated corticotroph function indicate LIF to be a differentiation factor for pituitary corticotroph cells by preferential phenotypic switching from proliferative to synthetic.
Resumo:
Chemotaxis in bacteria is controlled by regulating the direction of flagellar rotation. The regulation is carried out by the chemotaxis protein CheY. When phosphorylated, CheY binds to FliM, which is one of the proteins that constitute the "gear box" (or "switch") of the flagellar motor. Consequently, the motor shifts from the default direction of rotation, counterclockwise, to clockwise rotation. This biased rotation is terminated when CheY is dephosphorylated either spontaneously or, faster, by a specific phosphatase, CheZ. Logically, one might expect CheZ to act directly on FliM-bound CheY. However, here we provide direct biochemical evidence that, in contrast to this expectation, phosphorylated CheY (CheY approximately P), bound to FliM, is protected from dephosphorylation by CheZ. The complex between CheY approximately P and FliM was trapped by cross-linking with dimethylsuberimidate, and its susceptibility to CheZ was measured. CheY approximately P complexed with FliM, unlike free CheY approximately P, was not dephosphorylated by CheZ. However, it did undergo spontaneous dephosphorylation. Nonspecific cross-linked CheY dimers, measured as a control, were dephosphorylated by CheZ. No significant binding between CheZ and any of the switch proteins was detected. It is concluded that, in the termination mechanism of signal transduction in bacterial chemotaxis, CheZ acts only on free CheY approximately P. We suggest that CheZ affects switch-bound CheY approximately P by shifting the equilibrium between bound and free CheY approximately P.