11 resultados para contextual fear conditioning
em National Center for Biotechnology Information - NCBI
Resumo:
Evidence that lesions of the basolateral amygdala complex (BLC) impair memory for fear conditioning in rats, measured by lack of “freezing” behavior in the presence of cues previously paired with footshocks, has suggested that the BLC may be a critical locus for the memory of fear conditioning. However, evidence that BLC lesions may impair unlearned as well as conditioned freezing makes it difficult to interpret the findings of studies assessing conditioned fear with freezing. The present study investigated whether such lesions prevent the expression of several measures of memory for contextual fear conditioning in addition to freezing. On day 1, rats with sham lesions or BLC lesions explored a Y maze. The BLC-lesioned rats (BLC rats) displayed a greater exploratory activity. On day 2, each of the rats was placed in the “shock” arm of the maze, and all of the sham and half of the BLC rats received footshocks. A 24-hr retention test assessed the freezing, time spent per arm, entries per arm, and initial entry into the shock arm. As previously reported, shocked BLC rats displayed little freezing. However, the other measures indicated that the shocked BLC rats remembered the fear conditioning. They entered less readily and less often and spent less time in the shock arm than did the control nonshocked BLC rats. Compared with the sham rats, the shocked BLC rats entered more quickly and more often and spent more time in the shock arm. These findings indicate that an intact BLC is not essential for the formation and expression of long-term cognitive/explicit memory of contextual fear conditioning.
Resumo:
CCAAT/enhancer binding protein δ (C/EBPδ) is a transcriptional regulator implicated in the hepatic acute phase response and in adipogenic and myeloid cell differentiation. We found that C/EBPδ is widely expressed in the peripheral and central nervous systems, including neurons of the hippocampal formation, indicating a role in neural functions. To examine the role of C/EBPδ in vivo, we generated mice with a targeted deletion of the C/EBPδ gene. This mutation does not interfere with normal embryonic and postnatal development. Performance in a battery of behavioral tests indicates that basic neurological functions are normal. Furthermore, performance in a Morris water maze task suggests that C/EBPδ mutant mice have normal spatial learning. However, in the contextual and auditory-cue-conditioned fear task, C/EBPδ null mice displayed significantly more conditioned freezing to the test context than did wild-type controls, but equivalent conditioning to the auditory cue. These data demonstrate a selectively enhanced contextual fear response in mice carrying a targeted genomic mutation and implicate C/EBPδ in the regulation of a specific type of learning and memory.
Resumo:
Synaptotagmin (Syt) IV is a synaptic vesicle protein. Syt IV expression is induced in the rat hippocampus after systemic kainic acid treatment. To examine the functional role of this protein in vivo, we derived Syt IV null [Syt IV(−/−)] mutant mice. Studies with the rotorod revealed that the Syt IV mutants have impaired motor coordination, a result consistent with constitutive Syt IV expression in the cerebellum. Because Syt IV is thought to modulate synaptic function, we also have examined Syt IV mutant mice in learning and memory tests. Our studies show that the Syt IV mutation disrupts contextual fear conditioning, a learning task sensitive to hippocampal and amygdala lesions. In contrast, cued fear conditioning is normal in the Syt IV mutants, suggesting that this mutation did not disrupt amygdala function. Conditioned taste aversion, which also depends on the amygdala, is normal in the Syt IV mutants. Consistent with the idea that the Syt IV mutation preferentially affects hippocampal function, Syt IV mutant mice also display impaired social transmission of food preference. These studies demonstrate that Syt IV is critical for brain function and suggest that the Syt IV mutation affects hippocampal-dependent learning and memory, as well as motor coordination.
Resumo:
γ-Aminobutyric acid (GABA) type A receptors mediate fast inhibitory synaptic transmission and have been implicated in responses to sedative/hypnotic agents (including neuroactive steroids), anxiety, and learning and memory. Using gene targeting technology, we generated a strain of mice deficient in the δ subunit of the GABA type A receptors. In vivo testing of various behavioral responses revealed a strikingly selective attenuation of responses to neuroactive steroids, but not to other modulatory drugs. Electrophysiological recordings from hippocampal slices revealed a significantly faster miniature inhibitory postsynaptic current decay time in null mice, with no change in miniature inhibitory postsynaptic current amplitude or frequency. Learning and memory assessed with fear conditioning were normal. These results begin to illuminate the novel contributions of the δ subunit to GABA pharmacology and sedative/hypnotic responses and behavior and provide insights into the physiology of neurosteroids.
Resumo:
The Sanfilippo syndrome type B is an autosomal recessive disorder caused by mutation in the gene (NAGLU) encoding α-N-acetylglucosaminidase, a lysosomal enzyme required for the stepwise degradation of heparan sulfate. The most serious manifestations are profound mental retardation, intractable behavior problems, and death in the second decade. To generate a model for studies of pathophysiology and of potential therapy, we disrupted exon 6 of Naglu, the homologous mouse gene. Naglu−/− mice were healthy and fertile while young and could survive for 8–12 mo. They were totally deficient in α-N-acetylglucosaminidase and had massive accumulation of heparan sulfate in liver and kidney as well as secondary changes in activity of several other lysosomal enzymes in liver and brain and elevation of gangliosides GM2 and GM3 in brain. Vacuolation was seen in many cells, including macrophages, epithelial cells, and neurons, and became more prominent with age. Although most vacuoles contained finely granular material characteristic of glycosaminoglycan accumulation, large pleiomorphic inclusions were seen in some neurons and pericytes in the brain. Abnormal hypoactive behavior was manifested by 4.5-mo-old Naglu−/− mice in an open field test; the hyperactivity that is characteristic of affected children was not observed even in younger mice. In a Pavlovian fear conditioning test, the 4.5-mo-old mutant mice showed normal response to context, indicating intact hippocampal-dependent learning, but reduced response to a conditioning tone, perhaps attributable to hearing impairment. The phenotype of the α-N-acetylglucosaminidase-deficient mice is sufficiently similar to that of patients with the Sanfilippo syndrome type B to make these mice a good model for study of pathophysiology and for development of therapy.
Resumo:
The endogenous opioid system has been implicated in sexual behavior, palatable intake, fear, and anxiety. The present study examined whether ovariectomized female transgenic preproenkephalin-knockout (PPEKO) mice and their wild-type and heterozygous controls displayed alterations in fear and anxiety paradigms, sucrose intake, and lordotic behavior. To examine stability of responding, three squads of the genotypes were tested across seasons over a 20-month period. In a fear-conditioning paradigm, PPEKO mice significantly increased freezing to both fear and fear + shock stimuli relative to controls. In the open field, PPEKO mice spent significantly less time and traversed significantly less distance in the center of an open field than wild-type controls. Further, PPEKO mice spent significantly less time and tended to be less active on the light side of a dark–light chamber than controls, indicating that deletion of the enkephalin gene resulted in exaggerated responses to fear or anxiety-provoking environments. These selective deficits were observed consistently across testing squads spanning 20 months and different seasons. In contrast, PPEKO mice failed to differ from corresponding controls in sucrose, chow, or water intake across a range (0.0001–20%) of sucrose concentrations and failed to differ in either lordotic or female approach to male behaviors when primed with estradiol and progesterone, thereby arguing strongly for the selectivity of a fear and anxiety deficit which was not caused by generalized and nonspecific debilitation. These transgenic data strongly suggest that opioids, and particularly enkephalin gene products, are acting naturally to inhibit fear and anxiety.
Resumo:
Classical conditioning of Aplysia's siphon-withdrawal reflex is thought to be due to a presynaptic mechanism-activity-dependent presynaptic facilitation of sensorimotor connections. Recent experiments with sensorimotor synapses in dissociated cell culture, however, provide an alternative cellular mechanism for classical conditioning-Hebbian long-term potentiation (LTP) of sensorimotor connections. Induction of Hebbian LTP of these connections is mediated by activation of N-methyl-D-aspartate-related receptors and requires the postsynaptic elevation of intracellular Ca2+. To determine whether the enhancement of sensorimotor synapses during classical conditioning in Aplysia-like LTP of sensorimotor synapses in culture-also depends upon the elevation of postsynaptic Ca2+, we carried out experiments involving the cellular analog of classical conditioning of siphon withdrawal. We examined changes in the strength of monosynaptic siphon sensorimotor connections in the abdominal ganglion of Aplysia following paired presentations of sensory neuron activation and tail nerve shock. This training regimen resulted in significant enhancement of the monosynaptic sensorimotor excitatory postsynaptic potential, as compared with the sensorimotor excitatory postsynaptic potential in preparations that received only test stimulation. Infusing the motor neuron with 1,2-bis(2-aminophenoxy)ethane-N,N-N',N'-tetraacetic acid, a specific chelator of intracellular Ca2+, prior to paired stimulation training blocked this synaptic enhancement. Our results implicate a postsynaptic, possibly Hebbian, mechanism in classical conditioning in Aplysia.
Resumo:
Operant conditioning of the primate triceps surae H-reflex, the electrical analog of the spinal stretch reflex, creates a memory trace that includes changes in the spinal cord. To define the morphological correlates of this plasticity, we analyzed the synaptic terminal coverage of triceps surae motoneurons from animals in which the triceps surae H-reflex in one leg had been increased (HRup mode) or decreased (HRdown mode) by conditioning and compared them to each other and to motoneurons from unconditioned animals. Motoneurons were labeled by intramuscular injection of cholera toxin-horseradish peroxidase. A total of 5055 terminals on the cell bodies and proximal dendrites of 114 motoneurons from 14 animals were studied by electron microscopy. Significant differences were found between HRup and HRdown animals and between HRup and naive (i.e., unconditioned) animals. F terminals (i.e., putative inhibitory terminals) were smaller and their active zone coverage on the cell body was lower on motoneurons from the conditioned side of HRup animals than on motoneurons from the conditioned side of HRdown animals. C terminals (i.e., terminals associated with postsynaptic cisterns and rough endoplasmic reticulum) were smaller and the number of C terminals in each C complex (i.e., a group of contiguous C terminals) was larger on motoneurons from the conditioned side of HRup animals than on motoneurons either from the conditioned side of HRdown animals or from naive animals. Because the treatment of HRup and HRdown animals differed only in the reward contingency, the results imply that the two contingencies had different effects on motoneuron synaptic terminals. In combination with other recent data, they show that H-reflex conditioning produces a complex pattern of spinal cord plasticity that includes changes in motoneuron physiological properties as well as in synaptic terminals. Further delineation of this pattern should reveal the contribution of the structural changes described here to the learned change in behavior.
Resumo:
Relative cerebral glucose metabolism was examined with positron-emission tomography (PET) as a measure of neuronal activation during performance of the classically conditioned eyeblink response in 12 young adult subjects. Each subject received three sessions: (i) a control session with PET scan in which unpaired presentations of the tone conditioned stimulus and corneal airpuff unconditioned stimulus were administered, (ii) a paired training session to allow associative learning to occur, and (iii) a paired test session with PET scan. Brain regions exhibiting learning-related activation were identified as those areas that showed significant differences in glucose metabolism between the unpaired control condition and well-trained state in the 9 subjects who met the learning criterion. Areas showing significant activation included bilateral sites in the inferior cerebellar cortex/deep nuclei, anterior cerebellar vermis, contralateral cerebellar cortex and pontine tegmentum, ipsilateral inferior thalamus/red nucleus, ipsilateral hippocampal formation, ipsilateral lateral temporal cortex, and bilateral ventral striatum. Among all subjects, including those who did not meet the learning criterion, metabolic changes in ipsilateral cerebellar nuclei, bilateral cerebellar cortex, anterior vermis, contralateral pontine tegmentum, ipsilateral hippocampal formation, and bilateral striatum correlated with degree of learning. The localization to cerebellum and its associated brainstem circuitry is consistent with neurobiological studies in the rabbit model of eyeblink classical conditioning and neuropsychological studies in brain-damaged humans. In addition, these data support a role for the hippocampus in conditioning and suggest that the ventral striatum may also be involved.