4 resultados para contact lenses, citation analysis, articles, authors, journals, institutions, countries

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major purpose of this study was to identify and assess indexing coverage of core journals in cytotechnology. It was part of a larger project sponsored by the Nursing and Allied Health Resources Section of the Medical Library Association to map the literature of allied health. Three representative journals in cytotechnology were selected and subjected to citation analysis to determine what journals, other publication types, and years were cited and how often. Bradford's Law of Scattering was applied to the resulting list of cited journals to identify core titles in the discipline, and five indexes were searched to assess coverage of these core titles. Results indicated that the cytotechnology journal literature had a small core but wide dispersion: one third of the 21,021 journal citations appeared in only 3 titles; another third appeared in an additional 26 titles; the remaining third were scattered in 1,069 different titles. Science Citation Index Expanded rated highest in indexing coverage of the core titles, followed by MEDLINE, EMBASE/Excerpta Medica, HealthSTAR, and Cumulative Index to Nursing and Allied Health Literature (CINAHL). The study's results also showed that journals were the predominantly cited format and that citing authors relied strongly on more recent literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pax proteins are a family of transcription factors with a highly conserved paired domain; many members also contain a paired-type homeodomain and/or an octapeptide. Nine mammalian Pax genes are known and classified into four subgroups: Pax-1/9, Pax-2/5/8, Pax-3/7, and Pax-4/6. Most of these genes are involved in nervous system development. In particular, Pax-6 is a key regulator that controls eye development in vertebrates and Drosophila. Although the Pax-4/6 subgroup seems to be more closely related to Pax-2/5/8 than to Pax-3/7 or Pax-1/9, its evolutionary origin is unknown. We therefore searched for a Pax-6 homolog and related genes in Cnidaria, which is the lowest phylum of animals that possess a nervous system and eyes. A sea nettle (a jellyfish) genomic library was constructed and two pax genes (Pax-A and -B) were isolated and partially sequenced. Surprisingly, unlike most known Pax genes, the paired box in these two genes contains no intron. In addition, the complete cDNA sequences of hydra Pax-A and -B were obtained. Hydra Pax-B contains both the homeodomain and the octapeptide, whereas hydra Pax-A contains neither. DNA binding assays showed that sea nettle Pax-A and -B and hydra Pax-A paired domains bound to a Pax-5/6 site and a Pax-5 site, although hydra Pax-B paired domain bound neither. An alignment of all available paired domain sequences revealed two highly conserved regions, which cover the DNA binding contact positions. Phylogenetic analysis showed that Pax-A and especially Pax-B were more closely related to Pax-2/5/8 and Pax-4/6 than to Pax-1/9 or Pax-3/7 and that the Pax genes can be classified into two supergroups: Pax-A/Pax-B/Pax-2/5/8/4/6 and Pax-1/9/3/7. From this analysis and the gene structure, we propose that modern Pax-4/6 and Pax-2/5/8 genes evolved from an ancestral gene similar to cnidarian Pax-B, having both the homeodomain and the octapeptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been known for more than 40 years that images fade from perception when they are kept at the same position on the retina by abrogating eye movements. Although aspects of this phenomenon were described earlier, the use of close-fitting contact lenses in the 1950s made possible a series of detailed observations on eye movements and visual continuity. In the intervening decades, many investigators have studied the role of image motion on visual perception. Although several controversies remain, it is clear that images deteriorate and in some cases disappear following stabilization; eye movements are, therefore, essential to sustained exoptic vision. The time course of image degradation has generally been reported to be a few seconds to a minute or more, depending upon the conditions. Here we show that images of entoptic vascular shadows can disappear in less than 80 msec. The rapid vanishing of these images implies an active mechanism of image erasure and creation as the basis of normal visual processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural models of inward rectifier K+ channels incorporate four identical or homologous subunits, each of which has two hydrophobic segments (M1 and M2) which are predicted to span the membrane as α helices. Since hydrophobic interactions between proteins and membrane lipids are thought to be generally of a nonspecific nature, we attempted to identify lipid-contacting residues in Kir2.1 as those which tolerate mutation to tryptophan, which has a large hydrophobic side chain. Tolerated mutations were defined as those which produced measurable inwardly rectifying currents in Xenopus oocytes. To distinguish between water-accessible positions and positions adjacent to membrane lipids or within the protein interior we also mutated residues in M1 and M2 individually to aspartate, since an amino acid with a charged side chain should not be tolerated at lipid-facing or interior positions, due to the energy cost of burying a charge in a hydrophobic environment. Surprisingly, 17 out of 20 and 17 out of 22 non-tryptophan residues in M1 and M2, respectively, tolerated being mutated to tryptophan. Moreover, aspartate was tolerated at 15 out of 22 and 15 out of 21 non-aspartate M1 and M2 positions respectively. Periodicity in the pattern of tolerated vs. nontolerated mutations consistent with α helices or β strands did not emerge convincingly from these data. We consider the possibility that parts of M1 and M2 may be in contact with water.