4 resultados para compression molding

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short peptides corresponding to the arginine-rich domains of several RNA-binding proteins are able to bind to their specific RNA sites with high affinities and specificities. In the case of the HIV-1 Rev-Rev response element (RRE) complex, the peptide forms a single α-helix that binds deeply in a widened, distorted RNA major groove and makes a substantial set of base-specific and backbone contacts. Using a reporter system based on antitermination by the bacteriophage λ N protein, it has been possible to identify novel arginine-rich peptides from combinatorial libraries that recognize the RRE with affinities and specificities similar to Rev but that appear to bind in nonhelical conformations. Here we have used codon-based mutagenesis to evolve one of these peptides, RSG-1, into an even tighter binder. After two rounds of evolution, RSG-1.2 bound the RRE with 7-fold higher affinity and 15-fold higher specificity than the wild-type Rev peptide, and in vitro competition experiments show that RSG-1.2 completely displaces the intact Rev protein from the RRE at low peptide concentrations. By fusing RRE-binding peptides to the activation domain of HIV-1 Tat, we show that the peptides can deliver Tat to the RRE site and activate transcription in mammalian cells, and more importantly, that the fusion proteins can inhibit the activity of Rev in chloramphenicol acetyltransferase reporter assays. The evolved peptides contain proline and glutamic acid mutations near the middle of their sequences and, despite the presence of a proline, show partial α-helix formation in the absence of RNA. These directed evolution experiments illustrate how readily complex peptide structures can be evolved within the context of an RNA framework, perhaps reflecting how early protein structures evolved in an “RNA world.”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of inhomogeneous, weakly nonlinear waves is considered in a cochlear model having two degrees of freedom that represent the transverse motions of the tectorial and basilar membranes within the organ of Corti. It is assumed that nonlinearity arises from the saturation of outer hair cell active force generation. I use multiple scale asymptotics and treat nonlinearity as a correction to a linear hydroelastic wave. The resulting theory is used to explain experimentally observed features of the response of the cochlear partition to a pure tone, including: the amplification of the response in a healthy cochlea vs a dead one; the less than linear growth rate of the response to increasing sound pressure level; and the amount of distortion to be expected at high and low frequencies at basal and apical locations, respectively. I also show that the outer hair cell nonlinearity generates retrograde waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To examine the delay in presentation, diagnosis, and treatment of malignant spinal cord compression and to define the effect of this delay on motor and bladder function at the time of treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constant pressure and temperature molecular dynamics techniques have been employed to investigate the changes in structure and volumes of two globular proteins, superoxide dismutase and lysozyme, under pressure. Compression (the relative changes in the proteins' volumes), computed with the Voronoi technique, is closely related with the so-called protein intrinsic compressibility, estimated by sound velocity measurements. In particular, compression computed with Voronoi volumes predicts, in agreement with experimental estimates, a negative bound water contribution to the apparent protein compression. While the use of van der Waals and molecular volumes underestimates the intrinsic compressibilities of proteins, Voronoi volumes produce results closer to experimental estimates. Remarkably, for two globular proteins of very different secondary structures, we compute identical (within statistical error) protein intrinsic compressions, as predicted by recent experimental studies. Changes in the protein interatomic distances under compression are also investigated. It is found that, on average, short distances compress less than longer ones. This nonuniform contraction underlines the peculiar nature of the structural changes due to pressure in contrast with temperature effects, which instead produce spatially uniform changes in proteins. The structural effects observed in the simulations at high pressure can explain protein compressibility measurements carried out by fluorimetric and hole burning techniques. Finally, the calculation of the proteins static structure factor shows significant shifts in the peaks at short wavenumber as pressure changes. These effects might provide an alternative way to obtain information concerning compressibilities of selected protein regions.