2 resultados para complex amplitude pupil filters
em National Center for Biotechnology Information - NCBI
Resumo:
We compared magnetoencephalographic responses for natural vowels and for sounds consisting of two pure tones that represent the two lowest formant frequencies of these vowels. Our aim was to determine whether spectral changes in successive stimuli are detected differently for speech and nonspeech sounds. The stimuli were presented in four blocks applying an oddball paradigm (20% deviants, 80% standards): (i) /α/ tokens as deviants vs. /i/ tokens as standards; (ii) /e/ vs. /i/; (iii) complex tones representing /α/ formants vs. /i/ formants; and (iv) complex tones representing /e/ formants vs. /i/ formants. Mismatch fields (MMFs) were calculated by subtracting the source waveform produced by standards from that produced by deviants. As expected, MMF amplitudes for the complex tones reflected acoustic deviation: the amplitudes were stronger for the complex tones representing /α/ than /e/ formants, i.e., when the spectral difference between standards and deviants was larger. In contrast, MMF amplitudes for the vowels were similar despite their different spectral composition, whereas the MMF onset time was longer for /e/ than for /α/. Thus the degree of spectral difference between standards and deviants was reflected by the MMF amplitude for the nonspeech sounds and by the MMF latency for the vowels.
Resumo:
Studies of molecular structures at or near their equilibrium configurations have long provided information on their geometry in terms of bond distances and angles. Far-from-equilibrium structures are relatively unknown—especially for complex systems—and generally, neither their dynamics nor their average geometries can be extrapolated from equilibrium values. For such nonequilibrium structures, vibrational amplitudes and bond distances play a central role in phenomena such as energy redistribution and chemical reactivity. Ultrafast electron diffraction, which was developed to study transient molecular structures, provides a direct method for probing the nature of complex molecules far from equilibrium. Here we present our ultrafast electron diffraction observations of transient structures for two cyclic hydrocarbons. At high internal energies of ≈4 eV, these molecules display markedly different behavior. For 1,3,5-cycloheptatriene, excitation results in the formation of hot ground-state structures with bond distances similar to those of the initial structure, but with nearly three times the average vibrational amplitude. Energy is redistributed within 5 ps, but with a negative temperature characterizing the nonequilibrium population. In contrast, the ring-opening reaction of 1,3-cyclohexadiene is shown to result in hot structures with a C—C bond distance of over 1.7 Å, which is 0.2 Å away from any expected equilibrium value. Even up to 400 ps, energy remains trapped in large-amplitude motions comprised of torsion and asymmetric stretching. These studies promise a new direction for studying structural dynamics in nonequilibrium complex systems.