9 resultados para color images processing

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We extend the sensitivity of fluorescence resonance energy transfer (FRET) to the single molecule level by measuring energy transfer between a single donor fluorophore and a single acceptor fluorophore. Near-field scanning optical microscopy (NSOM) is used to obtain simultaneous dual color images and emission spectra from donor and acceptor fluorophores linked by a short DNA molecule. Photodestruction dynamics of the donor or acceptor are used to determine the presence and efficiency of energy transfer. The classical equations used to measure energy transfer on ensembles of fluorophores are modified for single-molecule measurements. In contrast to ensemble measurements, dynamic events on a molecular scale are observable in single pair FRET measurements because they are not canceled out by random averaging. Monitoring conformational changes, such as rotations and distance changes on a nanometer scale, within single biological macromolecules, may be possible with single pair FRET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Echolocating big brown bats (Eptesicus fuscus) broadcast ultrasonic frequency-modulated (FM) biosonar sounds (20–100 kHz frequencies; 10–50 μs periods) and perceive target range from echo delay. Knowing the acuity for delay resolution is essential to understand how bats process echoes because they perceive target shape and texture from the delay separation of multiple reflections. Bats can separately perceive the delays of two concurrent electronically generated echoes arriving as little as 2 μs apart, thus resolving reflecting points as close together as 0.3 mm in range (two-point threshold). This two-point resolution is roughly five times smaller than the shortest periods in the bat’s sounds. Because the bat’s broadcasts are 2,000–4,500 μs long, the echoes themselves overlap and interfere with each other, to merge together into a single sound whose spectrum is shaped by their mutual interference depending on the size of the time separation. To separately perceive the delays of overlapping echoes, the bat has to recover information about their very small delay separation that was transferred into the spectrum when the two echoes interfered with each other, thus explicitly reconstructing the range profile of targets from the echo spectrum. However, the bat’s 2-μs resolution limit is so short that the available spectral cues are extremely limited. Resolution of delay seems overly sharp just for interception of flying insects, which suggests that the bat’s biosonar images are of higher quality to suit a wider variety of orientation tasks, and that biosonar echo processing is correspondingly more sophisticated than has been suspected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In two experiments, electric brain waves of 14 subjects were recorded under several different conditions to study the invariance of brain-wave representations of simple patches of colors and simple visual shapes and their names, the words blue, circle, etc. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. A least-squares criterion of fit between prototypes and test samples was used for classification. The most significant results were these. By averaging over different subjects, as well as trials, we created prototypes from brain waves evoked by simple visual images and test samples from brain waves evoked by auditory or visual words naming the visual images. We correctly recognized from 60% to 75% of the test-sample brain waves. The general conclusion is that simple shapes such as circles and single-color displays generate brain waves surprisingly similar to those generated by their verbal names. These results, taken together with extensive psychological studies of auditory and visual memory, strongly support the solution proposed for visual shapes, by Bishop Berkeley and David Hume in the 18th century, to the long-standing problem of how the mind represents simple abstract ideas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem–loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured the regions in isoluminant color space over which observers perceive red, yellow, green, and blue and examined the extent to which the colors vary in perceived amount within these regions. We compared color scaling of various isoluminant stimuli by using large spots, which activate all cone types, to that with tiny spots in the central foveola, where S cones, and thus S opponent (So) cell activity, are largely or entirely absent. The addition of So input to that from the L and M opponent cells changes the chromatic appearance of all colors, affecting each primary color in different chromatic regions in the directions and by the amount predicted by our color model. Shifts from white to the various chromatic stimuli we used produced sinusoidal variations in cone activation as a function of color angle for each cone type and in the responses of lateral geniculate cells. However, psychophysical color-scaling functions for 2° spots were nonsinusoidal, being much more peaked. The color-scaling functions are well fit by sine waves raised to exponents between 1 and 3. The same is true for the color responses of a large subpopulation of striate cortex cells. The narrow color tuning, the discrepancies between the spectral loci of the peaks of the color-scaling curves and those of lateral geniculate cells, and the changes in color appearance produced by eliminating So input provide evidence for a cortical processing stage at which the color axes are rotated by a combination of the outputs of So cells with those of L and M opponent cells in the manner that we postulated earlier. There seems to be an expansive response nonlinearity at this stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In optimal foraging theory, search time is a key variable defining the value of a prey type. But the sensory-perceptual processes that constrain the search for food have rarely been considered. Here we evaluate the flight behavior of bumblebees (Bombus terrestris) searching for artificial flowers of various sizes and colors. When flowers were large, search times correlated well with the color contrast of the targets with their green foliage-type background, as predicted by a model of color opponent coding using inputs from the bees' UV, blue, and green receptors. Targets that made poor color contrast with their backdrop, such as white, UV-reflecting ones, or red flowers, took longest to detect, even though brightness contrast with the background was pronounced. When searching for small targets, bees changed their strategy in several ways. They flew significantly slower and closer to the ground, so increasing the minimum detectable area subtended by an object on the ground. In addition, they used a different neuronal channel for flower detection. Instead of color contrast, they used only the green receptor signal for detection. We relate these findings to temporal and spatial limitations of different neuronal channels involved in stimulus detection and recognition. Thus, foraging speed may not be limited only by factors such as prey density, flight energetics, and scramble competition. Our results show that understanding the behavioral ecology of foraging can substantially gain from knowledge about mechanisms of visual information processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have devised a microspectroscopic strategy for assessing the intracellular (re)distribution and the integrity of the primary structure of proteins involved in signal transduction. The purified proteins are fluorescent-labeled in vitro and reintroduced into the living cell. The localization and molecular state of fluorescent-labeled protein kinase C beta I isozyme were assessed by a combination of quantitative confocal laser scanning microscopy, fluorescence lifetime imaging microscopy, and novel determinations of fluorescence resonance energy transfer based on photobleaching digital imaging microscopy. The intensity and fluorescence resonance energy transfer efficiency images demonstrate the rapid nuclear translocation and ensuing fragmentation of protein kinase C beta I in BALB/c3T3 fibroblasts upon phorbol ester stimulation, and suggest distinct, compartmentalized roles for the regulatory and catalytic fragments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been known for more than 40 years that images fade from perception when they are kept at the same position on the retina by abrogating eye movements. Although aspects of this phenomenon were described earlier, the use of close-fitting contact lenses in the 1950s made possible a series of detailed observations on eye movements and visual continuity. In the intervening decades, many investigators have studied the role of image motion on visual perception. Although several controversies remain, it is clear that images deteriorate and in some cases disappear following stabilization; eye movements are, therefore, essential to sustained exoptic vision. The time course of image degradation has generally been reported to be a few seconds to a minute or more, depending upon the conditions. Here we show that images of entoptic vascular shadows can disappear in less than 80 msec. The rapid vanishing of these images implies an active mechanism of image erasure and creation as the basis of normal visual processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The silver (svr) gene of Drosophila melanogaster is required for viability, and severe mutant alleles result in death prior to eclosion. Adult flies homozygous or hemizygous for weaker alleles display several visible phenotypes, including cuticular structures that are pale and silvery in color due to reduced melanization. We have identified and cloned the DNA encoding the svr gene and determined the sequence of several partially overlapping cDNAs derived from svr mRNAs. The predicted amino acid sequence of the polypeptides encoded by these cDNAs indicates that the silver proteins are members of the family of preprotein-processing carboxypeptidases that includes the human carboxypeptidases E, M, and N. One class of svr mRNAs is alternatively spliced to encode at least two polyproteins, each of which is composed of two carboxypeptidase domains.