4 resultados para collagen structure

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of the cornea to transmit light while being mechanically resilient is directly attributable to the formation of an extracellular matrix containing orthogonal sheets of collagen fibrils. The detailed structure of the fibrils and how this structure underpins the mechanical properties and organization of the cornea is understood poorly. In this study, we used automated electron tomography to study the three-dimensional organization of molecules in corneal collagen fibrils. The reconstructions show that the collagen molecules in the 36-nm diameter collagen fibrils are organized into microfibrils (≈4-nm diameter) that are tilted by ≈15° to the fibril long axis in a right-handed helix. An unexpected finding was that the microfibrils exhibit a constant-tilt angle independent of radial position within the fibril. This feature suggests that microfibrils in concentric layers are not always parallel to each other and cannot retain the same neighbors between layers. Analysis of the lateral structure shows that the microfibrils exhibit regions of order and disorder within the 67-nm axial repeat of collagen fibrils. Furthermore, the microfibrils are ordered at three specific regions of the axial repeat of collagen fibrils that correspond to the N- and C-telopeptides and the d-band of the gap zone. The reconstructions also show macromolecules binding to the fibril surface at sites that correspond precisely to where the microfibrils are most orderly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydration forces are thought to result from the energetic cost of water rearrangement near macromolecular surfaces. Raman spectra, collected on the same collagen samples on which these forces were measured, reveal a continuous change in water hydrogen-bonding structure as a function of separation between collagen triple helices. The varying spectral parameters track the force-distance curve. The energetic cost of water “restructuring,” estimated from the spectra, is consistent with the measured energy of intermolecular interaction. These correlations support the idea that the change in water structure underlies the exponentially varying forces seen in this system at least over the 13–18-Å range of interaxial separations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that the extracellular matrix regulates normal cell proliferation, and it is assumed that anchorage-independent malignant cells escape this regulatory function. Here we demonstrate that human M24met melanoma cells remain responsive to growth regulatory signals that result from contact with type I collagen and that the effect on proliferation depends on the physical structure of the collagen. On polymerized fibrillar collagen, M24met cells are growth arrested at the G1/S checkpoint and maintain high levels of p27KIP1 mRNA and protein. In contrast, on nonfibrillar (denatured) collagen, the cells enter the cell cycle, and p27KIP1 is down-regulated. These growth regulatory effects involve contact between type I collagen and the collagen-binding integrin α2β1, which appears restricted in the presence of fibrillar collagen. Thus melanoma cells remain sensitive to negative growth regulatory signals originating from fibrillar collagen, and the proteolytic degradation of fibrils is a mechanism allowing tumor cells to escape these restrictive signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of arthritis in DBA/1 mice usually requires immunization with the antigen type II collagen emulsified with Mycobacterium tuberculosis in oil. Here we describe that interleukin 12 (IL-12) can replace mycobacteria and cause severe arthritis of DBA/1 mice when administered in combination with type II collagen. Immunization of DBA/1 mice with type II collagen emulsified in oil alone resulted in a weak immune response, and only a few animals (10-30%) developed arthritis. Administration of IL-12 for 5 days simultaneously with each immunization strongly enhanced the anti-type II collagen immune response. Collagen-specific interferon gamma (IFN-gamma) synthesis by ex vivo activated spleen cells was enhanced 3- to 10-fold. IFN-gamma was almost completely produced by CD4+ T cells. Furthermore, the production of collagen-specific IgG2a and IgG2b antibodies was upregulated 10- to 100-fold. As a consequence, the incidence of arthritis in the group of mice immunized with collagen plus IL-12 was very high (80-100%). The developing arthritis was severe, involving approximately 50% of all limbs with strongly increased footpad thickness in most cases. Furthermore, histological examination revealed massive, mainly polymorphonuclear cell infiltration, synovial hyperplasia, cartilage and bone destruction, as well as new bone formation. In many cases, this resulted in the complete loss of joint structure. Neutralization of IFN-gamma in vivo prevented the development of arthritis in collagen-immunized and IL-12-treated mice. In conclusion, our data show that in vivo administered IL-12 can profoundly upregulate a T helper I-type autoimmune response, resulting in severe joint disease in DBA/1 mice.