4 resultados para coherent scatter

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatocyte growth factor/scatter factor (HGF/SF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of colonies followed by disruption of cell–cell junctions and subsequent cell scattering. In Madin–Darby canine kidney cells, HGF/SF-induced motility involves actin reorganization mediated by Ras, but whether Ras and downstream signals regulate the breakdown of intercellular adhesions has not been established. Both HGF/SF and V12Ras induced the loss of the adherens junction proteins E-cadherin and β-catenin from intercellular junctions during cell spreading, and the HGF/SF response was blocked by dominant-negative N17Ras. Desmosomes and tight junctions were regulated separately from adherens junctions, because they were not disrupted by V12Ras. MAP kinase, phosphatidylinositide 3-kinase (PI 3-kinase), and Rac were required downstream of Ras, because loss of adherens junctions was blocked by the inhibitors PD098059 and LY294002 or by dominant-inhibitory mutants of MAP kinase kinase 1 or Rac1. All of these inhibitors also prevented HGF/SF-induced cell scattering. Interestingly, activated Raf or the activated p110α subunit of PI 3-kinase alone did not induce disruption of adherens junctions. These results indicate that activation of both MAP kinase and PI 3-kinase by Ras is required for adherens junction disassembly and that this is essential for the motile response to HGF/SF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hepatocyte growth factor (HGF/SF) receptor, Met, regulates mitogenesis, motility, and morphogenesis in a cell type-dependent fashion. Activation of Met via autocrine, paracrine, or mutational mechanisms can lead to tumorigenesis and metastasis and numerous studies have linked inappropriate expression of this ligand-receptor pair to most types of human solid tumors. To prepare mAbs to human HGF/SF, mice were immunized with native and denatured preparations of the ligand. Recloned mAbs were tested in vitro for blocking activity against scattering and branching morphogenesis. Our results show that no single mAb was capable of neutralizing the in vitro activity of HGF/SF, and that the ligand possesses a minimum of three epitopes that must be blocked to prevent Met tyrosine kinase activation. In vivo, the neutralizing mAb combination inhibited s.c. growth in athymic nu/nu mice of tumors dependent on an autocrine Met-HGF/SF loop. Importantly, growth of human glioblastoma multiforme xenografts expressing Met and HGF/SF were markedly reduced in the presence of HGF/SF-neutralizing mAbs. These results suggest interrupting autocrine and/or paracrine Met-HGF/SF signaling in tumors dependent on this pathway is a possible intervention strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factors that regulate cellular migration during embryonic development are essential for tissue and organ morphogenesis. Scatter factor/hepatocyte growth factor (SF/HGF) can stimulate motogenic and morphogenetic activities in cultured epithelial cells expressing the Met tyrosine kinase receptor and is essential for development; however, the precise physiological role of SF/HGF is incompletely understood. Here we provide functional evidence that inappropriate expression of SF/HGF in transgenic mice influences the development of two distinct migratory cell lineages, resulting in ectopic skeletal muscle formation and melanosis in the central nervous system, and patterned hyperpigmentation of the skin. Committed TRP-2 positive melanoblasts were found to be situated aberrantly within defined regions of the transgenic embryo, including the neural tube, which overproduced SF/RGF. Our data strongly suggest that SF/HGF possesses physiologically relevant scatter activity, and functions as a true morphogenetic factor by regulating migration and/or differentiation of select populations of premyogenic and neural crest cells during normal mammalian embryogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural changes in the retinal chromophore during the formation of the bathorhodopsin intermediate (bathoRT) in the room-temperature rhodopsin (RhRT) photosequence (i.e., vision) are examined using picosecond time-resolved coherent anti-Stokes Raman scattering. Specifically, the retinal structure assignable to bathoRT following 8-ps excitation of RhRT is measured via vibrational Raman spectroscopy at a 200-ps time delay where the only intermediate present is bathoRT. Significant differences are observed between the C=C stretching frequencies of the retinal chromophore at low temperature where bathorhodopsin is stabilized and at room temperature where bathorhodopsin is a transient species in the RhRT photosequence. These vibrational data are discussed in terms of the formation of bathoRT, an important step in the energy storage/transduction mechanism of RhRT.