6 resultados para cognitive neuroscience
em National Center for Biotechnology Information - NCBI
Resumo:
Memory illusions and distortions have long been of interest to psychology researchers studying memory, but neuropsychologists and neuroscientists have paid relatively little attention to them. This article attempts to lay the foundation for a cognitive neuroscience analysis of memory illusions and distortions by reviewing relevant evidence from a patient with a right frontal lobe lesion, patients with amnesia produced by damage to the medial temporal lobes, normal aging, and healthy young volunteers studied with functional neuroimaging techniques. Particular attention is paid to the contrasting roles of prefrontal cortex and medial temporal lobe structures in accurate and illusory remembering. Converging evidence suggests that the study of illusory memories can provide a useful tool for delineating the brain processes and systems involved in constructive aspects of remembering.
Resumo:
At the forefront of cognitive neuroscience research in normal humans are the new techniques of functional brain imaging: positron emission tomography and magnetic resonance imaging. The signal used by positron emission tomography is based on the fact that changes in the cellular activity of the brain of normal, awake humans and laboratory animals are accompanied almost invariably by changes in local blood flow. This robust, empirical relationship has fascinated scientists for well over a hundred years. Because the changes in blood flow are accompanied by lesser changes in oxygen consumption, local changes in brain oxygen content occur at the sites of activation and provide the basis for the signal used by magnetic resonance imaging. The biological basis for these signals is now an area of intense research stimulated by the interest in these tools for cognitive neuroscience research.
Resumo:
What is the role of selective attention in visual perception? Before answering this question, it is necessary to differentiate between attentional mechanisms that influence the identification of a stimulus from those that operate after perception is complete. Cognitive neuroscience techniques are particularly well suited to making this distinction because they allow different attentional mechanisms to be isolated in terms of timing and/or neuroanatomy. The present article describes the use of these techniques in differentiating between perceptual and postperceptual attentional mechanisms and then proposes a specific role of attention in visual perception. Specifically, attention is proposed to resolve ambiguities in neural coding that arise when multiple objects are processed simultaneously. Evidence for this hypothesis is provided by two experiments showing that attention—as measured electrophysiologically—is allocated to visual search targets only under conditions that would be expected to lead to ambiguous neural coding.
Resumo:
The primate visual system offers unprecedented opportunities for investigating the neural basis of cognition. Even the simplest visual discrimination task requires processing of sensory signals, formation of a decision, and orchestration of a motor response. With our extensive knowledge of the primate visual and oculomotor systems as a base, it is now possible to investigate the neural basis of simple visual decisions that link sensation to action. Here we describe an initial study of neural responses in the lateral intraparietal area (LIP) of the cerebral cortex while alert monkeys discriminated the direction of motion in a visual display. A subset of LIP neurons carried high-level signals that may comprise a neural correlate of the decision process in our task. These signals are neither sensory nor motor in the strictest sense; rather they appear to reflect integration of sensory signals toward a decision appropriate for guiding movement. If this ultimately proves to be the case, several fascinating issues in cognitive neuroscience will be brought under rigorous physiological scrutiny.
Resumo:
A central theme of cognitive neuroscience is that different parts of the brain perform different functions. Recent evidence from neuropsychology suggests that even the processing of arbitrary stimulus categories that are defined solely by cultural conventions (e.g., letters versus digits) can become spatially segregated in the cerebral cortex. How could the processing of stimulus categories that are not innate and that have no inherent structural differences become segregated? We propose that the temporal clustering of stimuli from a given category interacts with Hebbian learning to lead to functional localization. Neural network simulations bear out this hypothesis.
Resumo:
This article reviews some recent trends in imaging neuroscience. A distinction is made between making maps of functional responses in the brain and discerning the rules or principles that underlie their organization. After considering developments in the characterization of brain imaging data, several examples are presented that highlight the context-sensitive nature of neuronal responses that we measure. These contexts can be endogenous and physiological, reflecting the fact that each cortical area, or neuronal population, expresses its dynamics in the context of interactions with other areas. Conversely, these contexts can be experimental or psychological and can have a profound effect on the regional effects elicited. In this review we consider experimental designs and analytic strategies that go beyond cognitive subtraction and speculate on how functional imaging can be used to address both the details and principles underlying functional integration and specialization in the brain.