128 resultados para class II

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experiments presented in this report were designed to specifically examine the role of CD4–major histocompatibility complex (MHC) class II interactions during T cell development in vivo. We have generated transgenic mice expressing class II molecules that cannot interact with CD4 but that are otherwise competent to present peptides to the T cell receptor. MHC class II expression was reconstituted in Aβ gene knock-out mice by injection of a transgenic construct encoding either the wild-type I-Aβb protein or a construct encoding a mutation designed to specifically disrupt binding to the CD4 molecule. We demonstrate that the mutation, EA137 and VA142 in the β2 domain of I-Ab, is sufficient to disrupt CD4–MHC class II interactions in vivo. Furthermore, we show that this interaction is critical for the efficient selection of a complete repertoire of mature CD4+ T helper cells as evidenced by drastically reduced numbers of conventional CD4+ T cells in animals expressing the EA137/VA142 mutant I-Ab and by the failure to positively select the transgenic AND T cell receptor on the mutated I-Ab. These results underscore the importance of the CD4–class II interaction in the development of mature peripheral CD4+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B−/− or Cat D−/− antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B−/− splenocytes, as it did in Cat D−/− cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protective/suppressive major histocompatibility complex (MHC) class II alleles have been identified in humans and mice where they exert a disease-protective and immunosuppressive effect. Various modes of action have been proposed, among them differential expression of MHC class II genes in different types of antigen-presenting cells impacting on the T helper type 1 (Th1)–Th2 balance. To test this possibility, the expression of H-2 molecules from the four haplotypes H-2b, H-2d, H-2k, and H-2q was determined on bone marrow-derived macrophages (BMDMs) and splenic B cells. The I-Ab and I-Ek molecules, both well characterized as protective/suppressive, are expressed at a high level on almost all CD11b+ BMDMs for 5–8 days, after which expression slowly declines. In contrast, I-Ad, I-Ak, and I-Aq expression is lower, peaks over a shorter period, and declines more rapidly. No differential expression could be detected on B cells. In addition, the differential MHC class II expression found on macrophages skews the cytokine response of T cells as shown by an in vitro restimulation assay with BMDMs as antigen-presenting cells. The results indicate that macrophages of the protective/suppressive haplotypes express MHC class II molecules at a high level and exert Th1 bias, whereas low-level expression favors a Th2 response. We suggest that the extent of expression of the class II gene gates the back signal from T cells and in this way controls the activity of macrophages. This effect mediated by polymorphic nonexon segments of MHC class II genes may play a role in determining disease susceptibility in humans and mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helper T cells are triggered by molecular complexes of antigenic peptides and class II proteins of the major histocompatibility complex . The formation of stable complexes between class II major histocompatibility complex proteins and antigenic peptides is often accompanied by the formation of a short-lived complex. In this report, we describe T cell recognition of two distinct complexes, one short-lived and the other long-lived, formed during the binding of an altered myelin basic protein peptide to I-Ak. One myelin basic protein-specific T cell clone is triggered by only the short-lived complex, and another is triggered by only the stable complex. Thus, a single peptide bound to a particular class II molecule can activate different T cells depending on the conditions of the binding reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By combining two previously generated null mutations, Ii° and M°, we produced mice lacking the invariant chain and H-2M complexes, both required for normal cell-surface expression of major histocompatibility complex class II molecules loaded with the usual diverse array of peptides. As expected, the maturation and transport of class II molecules, their expression at the cell surface, and their capacity to present antigens were quite similar for cells from Ii°M° double-mutant mice and from animals carrying just the Ii° mutation. More surprising were certain features of the CD4+ T cell repertoire selected in Ii°M° mice: many fewer cells were selected than in Ii+M° animals, and these had been purged of self-reactive specificities, unlike their counterparts in Ii+M° animals. These findings suggest (i) that the peptides carried by class II molecules on stromal cells lacking H-2M complexes may almost all derive from invariant chain and (ii) that H-2M complexes edit the peptide array displayed on thymic stromal cells in the absence of invariant chain, showing that it can edit, in vivo, peptides other than CLIP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoids, synthetic and natural analogs of retinoic acid, exhibit potent growth inhibitory and cell differentiation activities that account for their beneficial effects in treating hyperproliferative diseases such as psoriasis, actinic keratosis, and certain neoplasias. Tazarotene is a synthetic retinoid that is used in the clinic for the treatment of psoriasis. To better understand the mechanism of retinoid action in the treatment of hyperproliferative diseases, we used a long-range differential display–PCR to isolate retinoid-responsive genes from primary human keratinocytes. We have identified a cDNA, tazarotene-induced gene 3 (TIG3; Retinoic Acid Receptor Responder 3) showing significant homology to the class II tumor suppressor gene, H-rev 107. Tazarotene treatment increases TIG3 expression in primary human keratinocytes and in vivo in psoriatic lesions. Increased TIG3 expression is correlated with decreased proliferation. TIG3 is expressed in a number of tissues, and expression is reduced in cancer cell lines and some primary tumors. In breast cancer cell lines, retinoid-dependent TIG3 induction is observed in lines that are growth suppressed by retinoids but not in nonresponsive lines. Transient over-expression of TIG3 in T47D or Chinese hamster ovary cells inhibits colony expansion. Finally, studies in 293 cells expressing TIG3 linked to an inducible promoter demonstrated decreased proliferation with increased TIG3 levels. These studies suggest that TIG3 may be a growth regulator that mediates some of the growth suppressive effects of retinoids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A monoclonal antibody specific for the empty conformation of class II MHC molecules revealed the presence of abundant empty molecules on the surface of spleen- and bone marrow-derived dendritic cells (DC) among various types of antigen-presenting cells. The empty class II MHC molecules are developmentally regulated and expressed predominantly on immature DC. They can capture peptide antigens directly from the extracellular medium and present bound peptides to antigen-specific T lymphocytes. The ability of the empty cell-surface class II MHC proteins to bind peptides and present them to T cells without intracellular processing can serve to extend the spectrum of antigens able to be presented by DC, consistent with their role as sentinels in the immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene(s) encoded within major histocompatibility complex (MHC) act as one of the major genetic elements contributing to the susceptibility of murine systemic lupus erythematosus (SLE). We have recently demonstrated that lupus susceptibility is more closely linked to the I-E− H-2b haplotype than to the I-E+ H-2d haplotype in lupus-prone BXSB and (NZB × BXSB)F1 hybrid mice. To investigate whether the reduced susceptibility to SLE in H-2d mice is related to the expression of the MHC class II Ea gene (absent in H-2b mice), we determined the possible role of the Ea gene as a lupus protective gene in mice. Our results showed that (i) the development of SLE was almost completely prevented in BXSB (H-2b) mice expressing two copies of the Ead transgene at the homozygous level as well as in BXSB H-2k (I-E+) congenic mice as for H-2d BXSB mice, and (ii) the expression of two functional Ea (transgenic and endogenous) genes in either H-2d/b (NZB × BXSB)F1 or H-2k/b (MRL × BXSB)F1 mice provided protection from SLE at levels comparable to those conferred by the H-2d/d or H-2k/k haplotype. In addition, the level of the Ea gene-mediated protection appeared to be dependent on the genetic susceptibility to SLE in individual lupus-prone mice. Our results indicate that the reduced susceptibility associated with the I-E+ H-2d and H-2k haplotypes (versus the I-E− H-2b haplotype) is largely, if not all, contributed by the apparent autoimmune suppressive effect of the Ea gene, independently of the expression of the I-A or other MHC-linked genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the relationship between major histocompatibility complex (MHC) class II compartments, secretory granules, and secretory lysosomes, we analyzed the localization and fate of MHC class II molecules in mast cells. In bone marrow-derived mast cells, the bulk of MHC class II molecules is contained in two distinct compartments, with features of both lysosomal compartments and secretory granules defined by their protein content and their accessibility to endocytic tracers. Type I granules display internal membrane vesicles and are accessed by exogenous molecules after a time lag of 20 min; type II granules are reached by the endocytic tracer later and possess a serotonin-rich electron-dense core surrounded by a multivesicular domain. In these type I and type II granules, MHC class II molecules, mannose-6-phosphate receptors and lysosomal membrane proteins (lamp1 and lamp2) localize to small intralumenal vesicles. These 60–80-nm vesicles are released along with inflammatory mediators during mast cell degranulation triggered by IgE-antigen complexes. These observations emphasize the intimate connection between the endocytic and secretory pathways in cells of the hematopoietic lineage which allows regulated secretion of the contents of secretory lysosomes, including membrane proteins associated with small vesicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Class I and class II molecules of the major histocompatibility complex present peptides to T cells. Class I molecules bind peptides that have been generated in the cytosol by proteasomes and delivered into the endoplasmic reticulum by the transporter associated with antigen presentation. In contrast, class II molecules are very efficient in the presentation of antigens that have been internalized and processed in endosomal/lysosomal compartments. In addition, class II molecules can present some cytosolic antigens by a TAP-independent pathway. To test whether this endogenous class II presentation pathway was linked to proteasome-mediated degradation of antigen in the cytosol, the N-end rule was utilized to produce two forms of the influenza virus matrix protein with different in vivo half-lives (10 min vs. 5 h) when expressed in human B cells. Whereas class I molecules presented both the short- and the long-lived matrix proteins, class II molecules presented exclusively the long-lived form of antigen. Thus, rapid degradation of matrix protein in the cytosol precluded its presentation by class II molecules. These data suggest that the turnover of long-lived cytosolic proteins, some of which is mediated by delivery into endosomal/lysosomal compartments, provides a mechanism for immune surveillance by CD4+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CIITA is a master transactivator of the major histocompatibility complex class II genes, which are involved in antigen presentation. Defects in CIITA result in fatal immunodeficiencies. CIITA activation is also the control point for the induction of major histocompatibility complex class II and associated genes by interferon-γ, but CIITA does not bind directly to DNA. Expression of CIITA in G3A cells, which lack endogenous CIITA, followed by in vivo genomic footprinting, now reveals that CIITA is required for the assembly of transcription factor complexes on the promoters of this gene family, including DRA, Ii, and DMB. CIITA-dependent promoter assembly occurs in interferon-γ-inducible cell types, but not in B lymphocytes. Dissection of the CIITA protein indicates that transactivation and promoter loading are inseparable and reveal a requirement for a GTP binding motif. These findings suggest that CIITA may be a new class of transactivator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T helper 1 cells play a major role in protective immunity against mycobacterial pathogens. Since the antigen (Ag) specificity of CD4+ human T cells is strongly controlled by HLA class II polymorphism, the immunogenic potential of candidate Ags needs to be defined in the context of HLA polymorphism. We have taken advantage of class II-deficient (Ab0) mice, transgenic for either HLA-DRA/B1*0301 (DR3) or HLA-DQB1*0302/DQA*0301 (DQ8) alleles. In these animals, all CD4+ T cells are restricted by the HLA molecule. We reported previously that human DR3-restricted T cells frequently recognize heat shock protein (hsp)65 of Mycobacterium tuberculosis, and only a single hsp65 epitope, p1–20. DR3.Ab0 mice, immunized with bacillus Calmette–Guérin or hsp65, developed T cell responses to M. tuberculosis, and recognized the same hsp65 epitope, p1–20. Hsp65-immunized DQ8.Ab0 mice mounted a strong response to bacillus Calmette–Guérin but not to p1–20. Instead, we identified three new DQ8-restricted T cell epitopes in the regions 171–200, 311–340, and 411–440. DR3.Ab0 mice immunized with a second major M. tuberculosis protein, Ag85 (composed of 85A, 85B, and 85C), also developed T cell responses against only one determinant, 85B p51–70, that was identified in this study. Importantly, subsequent analysis of human T cell responses revealed that HLA-DR3+, Ag85-reactive individuals recognize exactly the same peptide epitope as DR3.Ab0 mice. Strikingly, both DR3-restricted T cell epitopes represent the best DR3-binding sequences in hsp65 and 85B, revealing a strong association between peptide-immunodominance and HLA binding affinity. Immunization of DR3.Ab0 with the immunodominant peptides p1–20 and p51–70 induced T cell reactivity to M. tuberculosis. Thus, for two different Ags, T cells from DR3.Ab0 mice and HLA-DR3+ humans recognize the same immunodominant determinants. Our data support the use of HLA-transgenic mice in identifying human T cell determinants for the design of new vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several unanswered questions in T cell immunobiology relating to intracellular processing or in vivo antigen presentation could be approached if convenient, specific, and sensitive reagents were available for detecting the peptide–major histocompatibility complex (MHC) class I or class II ligands recognized by αβ T cell receptors. For this reason, we have developed a method using homogeneously loaded peptide–MHC class II complexes to generate and select specific mAb reactive with these structures using hen egg lysozyme (HEL) and I-Ak as a model system. mAbs specific for either HEL-(46–61)–Ak or HEL-(116–129)–Ak have been isolated. They cross-react with a small subset of I-Ak molecules loaded with self peptides but can nonetheless be used for flow cytometry, immunoprecipitation, Western blotting, and intracellular immunofluorescence to detect specific HEL peptide–MHC class II complexes formed by either peptide exposure or natural processing of native HEL. An example of the utility of these reagents is provided herein by using one of the anti-HEL-(46–61)–Ak specific mAbs to visualize intracellular compartments where I-Ak is loaded with HEL-derived peptides early after antigen administration. Other uses, especially for in vivo tracking of specific ligand-bearing antigen-presenting cells, are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NY-ESO-1 is a tumor-specific shared antigen with distinctive immunogenicity. Both CD8+ T cells and class-switched Ab responses have been detected from patients with cancer. In this study, a CD4+ T cell line was generated from peripheral blood mononuclear cells of a melanoma patient and was shown to recognize NY-ESO-1 peptides presented by HLA-DP4, a dominant MHC class II allele expressed in 43–70% of Caucasians. The ESO p157–170 peptide containing the core region of DP4-restricted T cell epitope was present in a number of tumor cell lines tested and found to be recognized by both CD4+ T cells as well as HLA-A2-restricted CD8+ T cells. Thus, the ESO p157–170 epitope represents a potential candidate for cancer vaccines aimed at generating both CD4+ and CD8+ T cell responses. More importantly, 16 of 17 melanoma patients who developed Ab against NY-ESO-1 were found to be HLA-DP4-positive. CD4+ T cells specific for the NY-ESO-1 epitopes were generated from 5 of 6 melanoma patients with NY-ESO-1 Ab. In contrast, no specific DP4-restricted T cells were generated from two patients without detectable NY-ESO-1 Ab. These results suggested that NY-ESO-1-specific DP4-restricted CD4+ T cells were closely associated with NY-ESO-1 Ab observed in melanoma patients and might play an important role in providing help for activating B cells for NY-ESO-1-specific Ab production.