16 resultados para chronic suppurative lung disease

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine the prevalence of asthma and chronic obstructive pulmonary disease in patients not known to have these disorders, who present in general practice with persistent cough, and to ascertain criteria to help general practitioners in diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, a number of quantitative epidemiological studies of specific diseases have been done in developing countries that for the first time allow estimation of the total burden of disease (mortality and morbidity) attributable to use of solid fuels in adult women and young children, who jointly receive the highest exposures because of their household roles. Few such studies are available as yet for adult men or children over 5 years. This paper evaluates the existing epidemiological studies and applies the resulting risks to the more than three-quarters of all Indian households dependent on such fuels. Allowance is made for the existence of improved stoves with chimneys and other factors that may lower exposures. Attributable risks are calculated in reference to the demographic conditions and patterns of each disease in India. Sufficient evidence is available to estimate risks most confidently for acute respiratory infections (ARI), chronic obstructive pulmonary disease (COPD), and lung cancer. Estimates for tuberculosis (TB), asthma, and blindness are of intermediate confidence. Estimates for heart disease have the lowest confidence. Insufficient quantitative evidence is currently available to estimate the impact of adverse pregnancy outcomes (e.g., low birthweight and stillbirth). The resulting conservative estimates indicate that some 400–550 thousand premature deaths can be attributed annually to use of biomass fuels in these population groups. Using a disability-adjusted lost life-year approach, the total is 4–6% of the Indian national burden of disease, placing indoor air pollution as a major risk factor in the country.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-P antibodies present in sera from patients with chronic Chagas heart disease (cChHD) recognize peptide R13, EEEDDDMGFGLFD, which encompasses the C-terminal region of the Trypanosoma cruzi ribosomal P1 and P2 proteins. This peptide shares homology with the C-terminal region (peptide H13 EESDDDMGFGLFD) of the human ribosomal P proteins, which is in turn the target of anti-P autoantibodies in systemic lupus erythematosus (SLE), and with the acidic epitope, AESDE, of the second extracellular loop of the β1-adrenergic receptor. Anti-P antibodies from chagasic patients showed a marked preference for recombinant parasite ribosomal P proteins and peptides, whereas anti-P autoantibodies from SLE reacted with human and parasite ribosomal P proteins and peptides to the same extent. A semi-quantitative estimation of the binding of cChHD anti-P antibodies to R13 and H13 using biosensor technology indicated that the average affinity constant was about 5 times higher for R13 than for H13. Competitive enzyme immunoassays demonstrated that cChHD anti-P antibodies bind to the acidic portions of peptide H13, as well as to peptide H26R, encompassing the second extracellular loop of the β1 adrenoreceptor. Anti-P antibodies isolated from cChHD patients exert a positive chronotropic effect in vitro on cardiomyocytes from neonatal rats, which resembles closely that of anti-β1 receptor antibodies isolated from the same patient. In contrast, SLE anti-P autoantibodies have no functional effect. Our results suggest that the adrenergic-stimulating activity of anti-P antibodies may be implicated in the induction of functional myocardial impairments observed in cChHD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serpins are a family of proteinase inhibitors that play a central role in the control of proteolytic cascades. Their inhibitory mechanism depends on the intramolecular insertion of the reactive loop into β-sheet A after cleavage by the target proteinase. Point mutations within the protein can allow aberrant conformational transitions characterized by β-strand exchange between the reactive loop of one molecule and β-sheet A of another. These loop-sheet polymers result in diseases as varied as cirrhosis, emphysema, angio-oedema, and thrombosis, and we recently have shown that they underlie an early-onset dementia. We report here the biochemical characteristics and crystal structure of a naturally occurring variant (Leu-55–Pro) of the plasma serpin α1-antichymotrypsin trapped as an inactive intermediate. The structure demonstrates a serpin configuration with partial insertion of the reactive loop into β-sheet A. The lower part of the sheet is filled by the last turn of F-helix and the loop that links it to s3A. This conformation matches that of proposed intermediates on the pathway to complex and polymer formation in the serpins. In particular, this intermediate, along with the latent and polymerized conformations, explains the loss of activity of plasma α1-antichymotrypsin associated with chronic obstructive pulmonary disease in patients with the Leu-55–Pro mutation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic Pseudomonas aeruginosa infection occurs in 75–90% of patients with cystic fibrosis (CF). It is the foremost factor in pulmonary function decline and early mortality. A connection has been made between mutant or missing CF transmembrane conductance regulator (CFTR) in lung epithelial cell membranes and a failure in innate immunity leading to initiation of P. aeruginosa infection. Epithelial cells use CFTR as a receptor for internalization of P. aeruginosa via endocytosis and subsequent removal of bacteria from the airway. In the absence of functional CFTR, this interaction does not occur, allowing for increased bacterial loads in the lungs. Binding occurs between the outer core of the bacterial lipopolysaccharide and amino acids 108–117 in the first predicted extracellular domain of CFTR. In experimentally infected mice, inhibiting CFTR-mediated endocytosis of P. aeruginosa by inclusion in the bacterial inoculum of either free bacterial lipopolysaccharide or CFTR peptide 108–117 resulted in increased bacterial counts in the lungs. CFTR is also a receptor on gastrointestinal epithelial cells for Salmonella enterica serovar Typhi, the etiologic agent of typhoid fever. There was a significant decrease in translocation of this organism to the gastrointestinal submucosa in transgenic mice that are heterozygous carriers of a mutant ΔF508 CFTR allele, suggesting heterozygous CFTR carriers may have increased resistance to typhoid fever. The identification of CFTR as a receptor for bacterial pathogens could underlie the biology of CF lung disease and be the basis for the heterozygote advantage for carriers of mutant alleles of CFTR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association between increased DNA-methyltransferase (DNA-MTase) activity and tumor development suggest a fundamental role for this enzyme in the initiation and progression of cancer. A true functional role for DNA-MTase in the neoplastic process would be further substantiated if the target cells affected by the initiating carcinogen exhibit changes in enzyme activity. This hypothesis was addressed by examining DNA-MTase activity in alveolar type II (target) and Clara (nontarget) cells from A/J and C3H mice that exhibit high and low susceptibility, respectively, for lung tumor formation. Increased DNA-MTase activity was found only in the target alveolar type II cells of the susceptible A/J mouse and caused a marked increase in overall DNA methylation in these cells. Both DNA-MTase and DNA methylation changes were detected 7 days after carcinogen exposure and, thus, were early events in neoplastic evolution. Increased gene expression was also detected by RNA in situ hybridization in hypertrophic alveolar type II cells of carcinogen-treated A/J mice, indicating that elevated levels of expression may be a biomarker for premalignancy. Enzyme activity increased incrementally during lung cancer progression and coincided with increased expression of the DNA-MTase activity are strongly associated with neoplastic development and constitute a key step in carcinogenesis. The detection of premalignant lung disease through increased DNA-MTase expression and the possibility of blocking the deleterious effects of this change with specific inhibitors will offer new intervention strategies for lung cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, a hypomorphic mutation in CD18 was generated by gene targeting, with homozygous mice displaying increased circulating neutrophil counts, defects in the response to chemically induced peritonitis, and delays in transplantation rejection. When this mutation was backcrossed onto the PL/J inbred strain, virtually all homozygous mice developed a chronic inflammatory skin disease with a mean age of onset of 11 weeks after birth. The disease was characterized by erythema, hair loss, and the development of scales and crusts. The histopathology revealed hyperplasia of the epidermis, subcorneal microabscesses, orthohyperkeratosis, parakeratosis, and lymphocyte exocytosis, which are features in common with human psoriasis and other hyperproliferative inflammatory skin disorders. Repetitive cultures failed to demonstrate bacterial or fungal organisms potentially involved in the pathogenesis of this disease, and the dermatitis resolved rapidly after subcutaneous administration of dexamethasone. Homozygous mutant mice on a (PL/J x C57BL/6J)F1 background did not develop the disease and backcross experiments suggest that a small number of genes (perhaps as few as one), in addition to CD18, determine susceptibility to the disorder. This phenotype provides a model for inflammatory skin disorders, may have general relevance to polygenic human inflammatory diseases, and should help to identify genes that interact with the beta2 integrins in inflammatory processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytokines are now recognized to play important roles in the physiology of the central nervous system (CNS) during health and disease. Tumor necrosis factor alpha (TNF-alpha) has been implicated in the pathogenesis of several human CNS disorders including multiple sclerosis, AIDS dementia, and cerebral malaria. We have generated transgenic mice that constitutively express a murine TNF-alpha transgene, under the control of its own promoter, specifically in their CNS and that spontaneously develop a chronic inflammatory demyelinating disease with 100% penetrance from around 3-8 weeks of age. High-level expression of the transgene was seen in neurons distributed throughout the brain. Disease is manifested by ataxia, seizures, and paresis and leads to early death. Histopathological analysis revealed infiltration of the meninges and CNS parenchyma by CD4+ and CD8+ T lymphocytes, widespread reactive astrocytosis and microgliosis, and focal demyelination. The direct action of TNF-alpha in the pathogenesis of this disease was confirmed by peripheral administration of a neutralizing anti-murine TNF-alpha antibody. This treatment completely prevented the development of neurological symptoms, T-cell infiltration into the CNS parenchyma, astrocytosis, and demyelination, and greatly reduced the severity of reactive microgliosis. These results demonstrate that overexpression of TNF-alpha in the CNS can cause abnormalities in nervous system structure and function. The disease induced in TNF-alpha transgenic mice shows clinical and histopathological features characteristic of inflammatory demyelinating CNS disorders in humans, and these mice represent a relevant in vivo model for their further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human β-defensins (HBDs) are antimicrobial peptides that may play a role in mucosal defense. Diminished activity of these peptides has been implicated in the pathogenesis of cystic fibrosis (CF) lung disease. We show that HBD-1 and HBD-2 mRNAs are expressed in excised surface and submucosal gland epithelia from non-CF and CF patients. The pro-inflammatory cytokine interleukin-1β stimulated the expression of HBD-2 but not HBD-1 mRNA and peptide in primary cultures of airway epithelia. HBD-1 was found in bronchoalveolar lavage (BAL) fluid from normal volunteers, CF patients, and patients with inflammatory lung diseases, whereas HBD-2 was detected in BAL fluid from patients with CF or inflammatory lung diseases, but not in normal volunteers. Both HBD-1 and HBD-2 were found in BAL fluid in concentrations of several ng/ml, and both recombinant peptides showed salt-sensitive bactericidal activity. These data suggest that in the lung HBD-2 expression is induced by inflammation, whereas HBD-1 may serve as a defense in the absence of inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of unknown cause that afflicts the central nervous system. MS is typified by a highly clonally restricted antigen-driven antibody response that is confined largely to the central nervous system. The major antigenic targets of this response and the role of antibody in disease pathogenesis remain unclear. To help resolve these issues, we cloned the IgG repertoire directly from active plaque and periplaque regions in MS brain and from B cells recovered from the cerebrospinal fluid of a patient with MS with subacute disease. We found that high-affinity anti-DNA antibodies are a major component of the intrathecal IgG response in the patients with MS that we studied. Furthermore, we show DNA-specific monoclonal antibodies rescued from two subjects with MS as well as a DNA-specific antibody rescued from an individual suffering from systemic lupus erythematosus bound efficiently to the surface of neuronal cells and oligodendrocytes. For two of these antibodies, cell-surface recognition was DNA dependent. Our findings indicate that anti-DNA antibodies may promote important neuropathologic mechanisms in chronic inflammatory disorders, such as MS and systemic lupus erythematosus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nontypeable Hemophilus influenzae (NTHi) is an important human pathogen in both children and adults. In children, it causes otitis media, the most common childhood infection and the leading cause of conductive hearing loss in the United States. In adults, it causes lower respiratory tract infections in the setting of chronic obstructive pulmonary disease, the fourth leading cause of death in the United States. The molecular mechanisms underlying the pathogenesis of NTHi-induced infections remain undefined, but they may involve activation of NF-κB, a transcriptional activator of multiple host defense genes involved in immune and inflammatory responses. Here, we show that NTHi strongly activates NF-κB in human epithelial cells via two distinct signaling pathways, NF-κB translocation-dependent and -independent pathways. The NF-κB translocation-dependent pathway involves activation of NF-κB inducing kinase (NIK)–IKKα/β complex leading to IκBα phosphorylation and degradation, whereas the NF-κB translocation-independent pathway involves activation of MKK3/6–p38 mitogen-activated protein (MAP) kinase pathway. Bifurcation of NTHi-induced NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase pathways may occur at transforming growth factor-β activated kinase 1 (TAK1). Furthermore, we show that toll-like receptor 2 (TLR2) is required for NTHi-induced NF-κB activation. In addition, several key inflammatory mediators including IL-1β, IL-8, and tumor necrosis factor-α are up-regulated by NTHi. Finally, P6, a 16-kDa lipoprotein highly conserved in the outer membrane of all NTHi and H. influenzae type b strains, appears to also activate NF-κB via similar signaling pathways. Taken together, our results demonstrate that NTHi activates NF-κB via TLR2–TAK1-dependent NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase signaling pathways. These studies may bring new insights into molecular pathogenesis of NTHi-induced infections and open up new therapeutic targets for these diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin 2 (IL-2)-deficient (IL-2-/-) mice develop hemolytic anemia and chronic inflammatory bowel disease. Importantly, the induction of disease in IL-2-deficient mice is critically dependent on CD4+ T cells. We have studied the requirements of T cells from IL-2-deficient mice for costimulation with B7 antigens. Stable B7-1 or B7-2 chinese hamster ovary (CHO) cell transfectants could synergize with anti-CD3 monoclonal antibody (mAb) to induce the proliferation of CD4+ T cells from IL-2-/- mutant mice. Further mechanistic studies established that B7-induced activation resulted in surface expression of the alpha chain of the IL-2 receptor. B7-induced proliferation occurred independently of IL-4 and was largely independent of the common gamma chain of the IL-2, IL-4, IL-7, IL-9, and IL-15 receptors. Finally, anti-B7-2 but not anti-B7-1 mAb was able to inhibit the activation of IL-2-/- T cells induced by anti-CD3 mAb in the presence of syngeneic antigen-presenting cells. The results of our experiments indicate that IL-2-/- CD4+ T cells remain responsive to B7 stimulation and raise the possibility that B7 antagonists have a role in the prevention/treatment of inflammatory bowel disease.