3 resultados para chronic lymphocytic leukaemia
em National Center for Biotechnology Information - NCBI
Resumo:
Chronic lymphocytic leukemia (CLL) B cells characteristically exhibit low or undetectable surface B cell receptor (BCR) and diminished responses to BCR-mediated signaling. These features suggest that CLL cells may have sustained mutations affecting one or more of the BCR proteins required for receptor surface assembly and signal transduction. Loss of expression and mutations in the critical BCR protein B29 (Igβ, CD79b), are prevalent in CLL and could produce the hallmark features of these leukemic B cells. Because patient CLL cells are intractable to manipulation, we developed a model system to analyze B29 mutations. Jurkat T cells stably expressing μ, κ, and mb1 efficiently assembled a functional BCR when infected with recombinant vaccinia virus bearing wild-type B29. In contrast, a B29 CLL mutant protein truncated in the transmembrane domain did not associate with μ or mb1 at the cell surface. Another B29 CLL mutant lacking the C-terminal immunoreceptor tyrosine activation motif tyrosine and distal residues brought the receptor to the surface as well as wild-type B29 but showed significant impairment in anti-IgM-stimulated signaling events including mitogen-activated protein kinase activation. These findings demonstrate that B29 mutations previously identified in CLL patients can affect BCR-dependent signaling and may contribute to the unresponsive B cell phenotype in CLL. Finally, the features of the B29 mutations in CLL predict that they may be generated by somatic hypermutation.
Resumo:
Aberrations of the long arm of chromosome 11 are among the most common chromosome abnormalities in lymphoproliferative disorders (LPD). Translocations involving BCL1 at 11q13 are strongly associated with mantle cell lymphoma. other nonrandom aberrations, especially deletions and, less frequently, translocations, involving bands 11q21-923 have been identified by chromosome banding analysis. To date, the critical genomic segment and candidate genes involved in these deletions have not been identified. In the present study, we have analyzed tumors from 43 patients with LPD (B-cell chronic lymphocytic leukemia, n = 40; mantle cell lymphoma, n = 3) showing aberrations of bands 11q21-923 by fluorescence in situ hybridization. As probes we used Alu-PCR products from 17 yeast artificial chromosome clones spanning chromosome bands 11q14.3-923.3, including a panel of yeast artificial chromosome clones recognizing a contiguous genomic DNA fragment of approximately 9-10 Mb in bands 11q22.3-923.3. In the 41 tumors exhibiting deletions, we identified a commonly deleted segment in band 11q22.3-923.1; this region is approximately 2-3 Mb in size and contains the genes coding for ATM (ataxia telangiectasia mutated), RDX (radixin), and FDX1 (ferredoxin 1). Furthermore, two translocation break-points were localized to a 1.8-Mb genomic fragment contained within the commonly deleted segment. Thus, we have identified a single critical region of 2-3 Mb in size in which 11q14-923 aberrations in LPD cluster. This provides the basis for the identification of the gene(s) at 11q22.3-923.1 that are involved in the pathogenesis of LPD.
Resumo:
Several lines of evidence indicate that immunoglobulin-bound prolactin found in human serum is not a conventional complex between an anti-prolactin antibody and prolactin but a different type of association of prolactin with the Fab portion of IgG heavy chains. The complex of prolactin with IgG was purified from serum by anti-human prolactin affinity chromatography and was shown to contain close to 1 mole of N epsilon-(gamma-glutamyl)lysine crosslinks per mole of complex, a characteristic feature in structures crosslinked by transglutaminase. Interestingly, the complex caused a proliferation of cells from a subset of patients with chronic lymphocytic leukemia, while it was inactive in a cell proliferation prolactin bioassay. By contrast, human prolactin stimulated the proliferation of cells in the bioassay but had no effect on the complex-responsive cells from the patients. Competition studies with prolactin and free Fc fragment of IgG demonstrated a necessity for engaging both the prolactin and the immunoglobulin receptors for proliferation. More importantly, competition for the growth response by free prolactin and IgG suggests both possible reasons for the slow growth of this neoplasm as well as avenues for control of the disease.