13 resultados para chromosome 21

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite mounting genetic evidence implicating a recent origin of modern humans, the elucidation of early migratory gene-flow episodes remains incomplete. Geographic distribution of haplotypes may show traces of ancestral migrations. However, such evolutionary signatures can be erased easily by recombination and mutational perturbations. A 565-bp chromosome 21 region near the MX1 gene, which contains nine sites frequently polymorphic in human populations, has been found. It is unaffected by recombination and recurrent mutation and thus reflects only migratory history, genetic drift, and possibly selection. Geographic distribution of contemporary haplotypes implies distinctive prehistoric human migrations: one to Oceania, one to Asia and subsequently to America, and a third one predominantly to Europe. The findings with chromosome 21 are confirmed by independent evidence from a Y chromosome phylogeny. Loci of this type will help to decipher the evolutionary history of modern humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chromosome painting in placental mammalians illustrates that genome evolution is marked by chromosomal synteny conservation and that the association of chromosomes 3 and 21 may be the largest widely conserved syntenic block known for mammals. We studied intrachromosomal rearrangements of the syntenic block 3/21 by using probes derived from chromosomal subregions with a resolution of up to 10–15 Mbp. We demonstrate that the rearrangements visualized by chromosome painting, mostly translocations, are only a fraction of the actual chromosomal changes that have occurred during evolution. The ancestral segment order for both primates and carnivores is still found in some species in both orders. From the ancestral primate/carnivore condition an inversion is needed to derive the pig homolog, and a fission of chromosome 21 and a pericentric inversion is needed to derive the Bornean orangutan condition. Two overlapping inversions in the chromosome 3 homolog then would lead to the chromosome form found in humans and African apes. This reconstruction of the origin of human chromosome 3 contrasts with the generally accepted scenario derived from chromosome banding in which it was proposed that only one pericentric inversion was needed. From the ancestral form for Old World primates (now found in the Bornean orangutan) a pericentric inversion and centromere shift leads to the chromosome ancestral for all Old World monkeys. Intrachromosomal rearrangements, as shown here, make up a set of potentially plentiful and informative markers that can be used for phylogenetic reconstruction and a more refined comparative mapping of the genome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approach was developed for the quantification of subtle gains and losses of genomic DNA. The approach relies on a process called molecular combing. Molecular combing consists of the extension and alignment of purified molecules of genomic DNA on a glass coverslip. It has the advantage that a large number of genomes can be combed per coverslip, which allows for a statistically adequate number of measurements to be made on the combed DNA. Consequently, a high-resolution approach to mapping and quantifying genomic alterations is possible. The approach consists of applying fluorescence hybridization to the combed DNA by using probes to identify the amplified region. Measurements then are made on the linear hybridization signals to ascertain the region's exact size. The reliability of the approach first was tested for low copy number amplifications by determining the copy number of chromosome 21 in a normal and trisomy 21 cell line. It then was tested for high copy number amplifications by quantifying the copy number of an oncogene amplified in the tumor cell line GTL-16. These results demonstrate that a wide range of amplifications can be accurately and reliably quantified. The sensitivity and resolution of the approach likewise was assessed by determining the copy number of a single allele (160 kb) alteration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cu/Zn superoxide dismutase (Cu/Zn SOD) is a key enzyme in the metabolism of oxygen free radicals. The gene resides on chromosome 21 and is overexpressed in patients with Down syndrome. Cultured neurons of transgenic Cu/Zn SOD (Tg-Cu/Zn SOD) mice with elevated activity of Cu/Zn SOD were used to determine whether constitutive overexpression of Cu/Zn SOD creates an indigenous oxidative stress that predisposes the Tg-Cu/Zn SOD neurons to added insults. Neurons from three independently derived Tg-Cu/Zn SOD strains showed higher susceptibility than nontransgenic neurons to kainic acid (KA)-mediated excitotoxicity, reflected by an earlier onset and enhanced apoptotic cell death. This higher susceptibility of transgenic neurons to KA-mediated apoptosis was associated with a chronic prooxidant state that was manifested by reduced levels of cellular glutathione and altered [Ca2+]i homeostasis. The data are compatible with the thesis that overexpression of Cu/Zn SOD creates chronic oxidative stress in the transgenic neurons, which exacerbates their susceptibility to additional insults such as KA-mediated excitotoxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human chromosome 21 AML1 gene is expressed predominantly in the hematopoietic system. In several leukemia-associated translocations AML1 is fused to other genes and transcription of the fused regions is mediated by upstream sequences that normally regulate the expression of AML1. The 5' genomic region of AML1 was cloned and sequenced. The two 5' untranslated regions (UTRs) previously identified in AML1 cDNAs were located in this region and the distance between them was established. The distal 5' UTR maps over 7 kb upstream of the proximal one. Using primer extension with mRNA, transcription start sites were identified at two distinct sites above these 5' uTRs. Sequence analysis revealed the absence of a TATA motif and the presence of Sp1, PU.1, Oct, CRE, Myb, Ets, and Ets-like binding sites in both upstream regions. Several initiator elements (Inr) that overlap the transcription start sites were also identified. These proximal and distal upstream regions and their deletion mutants were cloned in front of a luciferase reporter gene and used in transfection assays. We demonstrate that both upstream regions function as promoters in hematopoietic (Jurkat) and nonhematopoietic (HEK) cell lines. The activity of both promoters was orientation dependent and was enhanced, in a cell-type specific manner, by a heterologous enhancer sequence. These results indicate that additional control elements, either negative or positive, regulate the tissue-specific expression of AML1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many features of Down syndrome might result from the overdosage of only a few genes located in a critical region of chromosome 21. To search for these genes, cosmids mapping in this region were isolated and used for trapping exons. One of the trapped exons obtained has a sequence very similar to part of the Drosophila single-minded (sim) gene, a master regulator of the early development of the fly central nervous system midline. Mapping data indicated that this exonic sequence is only present in the Down syndrome-critical region in the human genome. Hybridization of this exonic sequence with human fetal kidney poly(A)+ RNA revealed two transcripts of 6 and 4.3 kb. In situ hybridization of a probe derived from this exon with human and rat fetuses showed that the corresponding gene is expressed during early fetal life in the central nervous system and in other tissues, including the facial, skull, palate, and vertebra primordia. The expression pattern of this gene suggests that it might be involved in the pathogenesis of some of the morphological features and brain anomalies observed in Down syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeting of gene regulatory factors to specific intranuclear sites may be critical for the accurate control of gene expression. The acute myelogenous leukemia 8;21 (AML1/ETO) fusion protein is encoded by a rearranged gene created by the ETO chromosomal translocation. This protein lacks the nuclear matrix-targeting signal that directs the AML1 protein to appropriate gene regulatory sites within the nucleus. Here we report that substitution of the chromosome 8-derived ETO protein for the multifunctional C terminus of AML1 precludes targeting of the factor to AML1 subnuclear domains. Instead, the AML1/ETO fusion protein is redirected by the ETO component to alternate nuclear matrix-associated foci. Our results link the ETO chromosomal translocation in AML with modifications in the intranuclear trafficking of the key hematopoietic regulatory factor, AML1. We conclude that misrouting of gene regulatory factors as a consequence of chromosomal translocations is an important characteristic of acute leukemias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the ATRX gene on the human X chromosome cause X-linked α-thalassemia and mental retardation. XY patients with deletions or mutations in this gene display varying degrees of sex reversal, implicating ATRX in the development of the human testis. To explore further the role of ATRX in mammalian sex differentiation, the homologous gene was cloned and characterized in a marsupial. Surprisingly, active homologues of ATRX were detected on the marsupial Y as well as the X chromosome. The Y-borne copy (ATRY) displays testis-specific expression. This, as well as the sex reversal of ATRX patients, suggests that ATRY is involved in testis development in marsupials and may represent an ancestral testis-determining mechanism that predated the evolution of SRY as the primary mammalian male sex-determining gene. There is no evidence for a Y-borne ATRX homologue in mouse or human, implying that this gene has been lost in eutherians and its role supplanted by the evolution of SRY from SOX3 as the dominant determiner of male differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many agronomically important plant genes, only their position on a genetic map is known. In the absence of an efficient transposon tagging system, such genes have to be isolated by map-based cloning. In bread wheat Triticum aestivum, the genome is hexaploid, has a size of 1.6 × 1010 bp, and contains more than 80% of repetitive sequences. So far, this genome complexity has not allowed chromosome walking and positional cloning. Here, we demonstrate that chromosome walking using bacterial artificial chromosome (BAC) clones is possible in the diploid wheat Triticum monococcum (Am genome). BAC end sequences were mostly repetitive and could not be used for the first walking step. New probes corresponding to rare low-copy sequences were efficiently identified by low-pass DNA sequencing of the BACs. Two walking steps resulted in a physical contig of 450 kb on chromosome 1AmS. Genetic mapping of the probes derived from the BAC contig demonstrated perfect colinearity between the physical map of T. monococcum and the genetic map of bread wheat on chromosome 1AS. The contig genetically spans the Lr10 leaf rust disease resistance locus in bread wheat, with 0.13 centimorgans corresponding to 300 kb between the closest flanking markers. Comparison of the genetic to physical distances has shown large variations within 350 kb of the contig. The physical contig can now be used for the isolation of the orthologous regions in bread wheat. Thus, subgenome chromosome walking in wheat can produce large physical contigs and saturate genomic regions to support positional cloning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A whole genome cattle-hamster radiation hybrid cell panel was used to construct a map of 54 markers located on bovine chromosome 5 (BTA5). Of the 54 markers, 34 are microsatellites selected from the cattle linkage map and 20 are genes. Among the 20 mapped genes, 10 are new assignments that were made by using the comparative mapping by annotation and sequence similarity strategy. A LOD-3 radiation hybrid framework map consisting of 21 markers was constructed. The relatively low retention frequency of markers on this chromosome (19%) prevented unambiguous ordering of the other 33 markers. The length of the map is 398.7 cR, corresponding to a ratio of ≈2.8 cR5,000/cM. Type I genes were binned for comparison of gene order among cattle, humans, and mice. Multiple internal rearrangements within conserved syntenic groups were apparent upon comparison of gene order on BTA5 and HSA12 and HSA22. A similarly high number of rearrangements were observed between BTA5 and MMU6, MMU10, and MMU15. The detailed comparative map of BTA5 should facilitate identification of genes affecting economically important traits that have been mapped to this chromosome and should contribute to our understanding of mammalian chromosome evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usher syndrome is a group of diseases with autosomal recessive inheritance, congenital hearing loss, and the development of retinitis pigmentosa, a progressive retinal degeneration characterized by night blindness and visual field loss over several decades. The causes of Usher syndrome are unknown and no animal models have been available for study. Four human gene sites have been reported, suggesting at least four separate forms of Usher syndrome. We report a mouse model of type I Usher syndrome, rd5, whose linkage on mouse chromosome 7 to Hbb and tub has homology to human Usher I reported on human chromosome 11p15. The electroretinogram in homozygous rd5/rd5 mouse is never normal with reduced amplitudes that extinguish by 6 months. Auditory-evoked response testing demonstrates increased hearing thresholds more than control at 3 weeks of about 30 decibels (dB) that worsen to about 45 dB by 6 months.