10 resultados para chloroquine resistance transporter

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of the yeast Pdr5 ATP-binding cassette transporter leads to pleiotropic drug resistance to a variety of structurally unrelated cytotoxic compounds. To identify Pdr5 residues involved in substrate recognition and/or drug transport, we used a combination of random in vitro mutagenesis and phenotypic screening to isolate novel mutant Pdr5 transporters with altered substrate specificity. A plasmid library containing randomly mutagenized PDR5 genes was transformed into appropriate drug-sensitive yeast cells followed by phenotypic selection of Pdr5 mutants. Selected mutant Pdr5 transporters were analyzed with respect to their expression levels, subcellular localization, drug resistance profiles to cycloheximide, rhodamines, antifungal azoles, steroids, and sensitivity to the inhibitor FK506. DNA sequencing of six PDR5 mutant genes identified amino acids important for substrate recognition, drug transport, and specific inhibition of the Pdr5 transporter. Mutations were found in each nucleotide-binding domain, the transmembrane domain 10, and, most surprisingly, even in predicted extracellular hydrophilic loops. At least some point mutations identified appear to influence folding of Pdr5, suggesting that the folded structure is a major substrate specificity determinant. Surprisingly, a S1360F exchange in transmembrane domain 10 not only caused limited substrate specificity, but also abolished Pdr5 susceptibility to inhibition by the immunosuppressant FK506. This is the first report of a mutation in a yeast ATP-binding cassette transporter that allows for the functional separation of substrate transport and inhibitor susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MCF-7/AdrVp is a multidrug-resistant human breast cancer subline that displays an ATP-dependent reduction in the intracellular accumulation of anthracycline anticancer drugs in the absence of overexpression of known multidrug resistance transporters such as P glycoprotein or the multidrug resistance protein. RNA fingerprinting led to the identification of a 2.4-kb mRNA that is overexpressed in MCF-7/AdrVp cells relative to parental MCF-7 cells. The mRNA encodes a 663-aa member of the ATP-binding cassette superfamily of transporters that we term breast cancer resistance protein (BCRP). Enforced expression of the full-length BCRP cDNA in MCF-7 breast cancer cells confers resistance to mitoxantrone, doxorubicin, and daunorubicin, reduces daunorubicin accumulation and retention, and causes an ATP-dependent enhancement of the efflux of rhodamine 123 in the cloned transfected cells. BCRP is a xenobiotic transporter that appears to play a major role in the multidrug resistance phenotype of MCF-7/AdrVp human breast cancer cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pfmdr1 gene has been associated with a drug-resistant phenotype in Plasmodium falciparum, and overexpression of pfmdr1 has been associated with mefloquine- and halofantrine-resistant parasites, but little is known about the functional role of pfmdr1 in this process. Here, we demonstrate that the pfmdr1 gene expressed in a heterologous yeast system functions as a transport molecule and complements a mutation in ste6, a gene which encodes a mating pheromone a-factor export molecule. In addition, the pfmdr1 gene containing two mutations which are associated with naturally occurring chloroquine resistance abolishes this mating phenotype, suggesting that these genetic polymorphisms alter this transport function. Our results support the functional role of pfmdr1 as a transport molecule in the mediation of drug resistance and provide an assay system to address the nature of this transport function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe the isolation of an Arabidopsis gene that is closely related to the animal ZnT genes (Zn transporter). The protein encoded by the ZAT (Zn transporter of Arabidopsis thaliana) gene has 398 amino acid residues and is predicted to have six membrane-spanning domains. To obtain evidence for the postulated function of the Arabidopsis gene, transgenic plants with the ZAT coding sequence under control of the cauliflower mosaic virus 35S promoter were analyzed. Plants obtained with ZAT in the sense orientation exhibited enhanced Zn resistance and strongly increased Zn content in the roots under high Zn exposure. Antisense mRNA-producing plants were viable, with a wild-type level of Zn resistance and content, like plants expressing a truncated coding sequence lacking the C-terminal cytoplasmic domain of the protein. The availability of ZAT can lead to a better understanding of the mechanism of Zn homeostasis and resistance in plants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leishmania parasites lack a purine biosynthetic pathway and depend on surface nucleoside and nucleobase transporters to provide them with host purines. Leishmania donovani possess two closely related genes that encode high affinity adenosine-pyrimidine nucleoside transporters LdNT1.1 and LdNT1.2 and that transport the toxic adenosine analog tubercidin in addition to the natural substrates. In this study, we have characterized a drug-resistant clonal mutant of L. donovani (TUBA5) that is deficient in LdNT1 transport and consequently resistant to tubercidin. In TUBA5 cells, the LdNT1.2 genes had the same sequence as wild-type cells. However, because LdNT1.2 mRNA is not detectable in either wild-type or TUBA5 promastigotes, LdNT1.2 does not contribute to nucleoside transport in this stage of the life cycle. In contrast, the TUBA5 cells were compound heterozygotes at the LdNT1.1 locus containing two mutant alleles that encompassed distinct point mutations, each of which impaired transport function. One of the mutant LdNT1.1 alleles encoded a G183D substitution in predicted TM 5, and the other allele contained a C337Y change in predicted TM 7. Whereas G183D and C337Y mutants had only slightly elevated adenosine Km values, the severe impairment in transport resulted from drastically (≈20-fold) reduced Vmax values. Because these transporters were correctly targeted to the plasma membrane, the reduction in Vmax apparently resulted from a defect in translocation. Strikingly, G183 was essential for pyrimidine nucleoside but not adenosine transport. A mutant transporter with a G183A substitution had an altered substrate specificity, exhibiting robust adenosine transport but undetectable uridine uptake. These results suggest that TM 5 is likely to form part of the nucleoside translocation pathway in LdNT1.1

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resistance of Lactococcus lactis to cytotoxic compounds shares features with the multidrug resistance phenotype of mammalian tumor cells. Here, we report the gene cloning and functional characterization in Escherichia coli of LmrA, a lactococcal structural and functional homolog of the human multidrug resistance P-glycoprotein MDR1. LmrA is a 590-aa polypeptide that has a putative topology of six alpha-helical transmembrane segments in the N-terminal hydrophobic domain, followed by a hydrophilic domain containing the ATP-binding site. LmrA is similar to each of the two halves of MDR1 and may function as a homodimer. The sequence conservation between LmrA and MDR1 includes particular regions in the transmembrane domains and connecting loops, which, in MDR1 and the MDR1 homologs in other mammalian species, have been implicated as determinants of drug recognition and binding. LmrA and MDR1 extrude a similar spectrum of amphiphilic cationic compounds, and the activity of both systems is reversed by reserpine and verapamil. As LmrA can be functionally expressed in E. coli, it offers a useful prokaryotic model for future studies on the molecular mechanism of MDR1-like multidrug transporters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel Saccharomyces cerevisiae mutant, unable to grow in the presence of 12.5 mM EGTA, was isolated by replica plating. The phenotype of the mutant is caused by a single amino acid change (Gly149 to Arg) in the essential yeast gene CDC1. The mutant could be suppressed by overexpression of the SMF1 gene, which was isolated as an extragenic high-copy suppressor. The SMF1 gene codes for a highly hydrophobic protein and its deletion renders the yeast cells sensitive to low manganese concentration. In accordance with this observation, the smf1 null mutant exhibits reduced Mn2+ uptake at micromolar concentrations. Using a specific antibody, we demonstrated that Smf1p is located in the yeast plasma membrane. These results suggest that Smf1p is involved in high-affinity Mn2+ uptake. This assumption was also tested by overexpressing the SMF1 gene in the temperature-sensitive mutant of the mitochondrial processing peptidase (MAS1). SMF1 overexpression as well as addition of 1 mM Mn2+ to the growth medium complemented this mutation. This also suggests that in vivo Mas1p is a manganese-dependent peptidase. The yeast Smf1p resembles a protein from Drosophila and mammalian macrophages. The latter was implicated in conferring resistance to mycobacteria. A connection between Mn2+ transport and resistance or sensitivity to mycobacteria is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exact role of the pfmdr1 gene in the emergence of drug resistance in the malarial parasite Plasmodium falciparum remains controversial. pfmdr1 is a member of the ATP binding cassette (ABC) superfamily of transporters that includes the mammalian P-glycoprotein family. We have introduced wild-type and mutant variants of the pfmdr1 gene in the yeast Saccharomyces cerevisiae and have analyzed the effect of pfmdr1 expression on cellular resistance to quinoline-containing antimalarial drugs. Yeast transformants expressing either wild-type or a mutant variant of mouse P-glycoprotein were also analyzed. Dose-response studies showed that expression of wild-type pfmdr1 causes cellular resistance to quinine, quinacrine, mefloquine, and halofantrine in yeast cells. Using quinacrine as substrate, we observed that increased resistance to this drug in pfmdr1 transformants was associated with decreased cellular accumulation and a concomitant increase in drug release from preloaded cells. The introduction of amino acid polymorphisms in TM11 of Pgh-1 (pfmdr1 product) associated with drug resistance in certain field isolates of P. falciparum abolished the capacity of this protein to confer drug resistance. Thus, these findings suggest that Pgh-1 may act as a drug transporter in a manner similar to mammalian P-glycoprotein and that sequence variants associated with drug-resistance pfmdr1 alleles behave as loss of function mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MRP is a recently isolated ATP-binding cassette family transporter. We previously reported transfection studies that established that MRP confers multidrug resistance [Kruh, G. D., Chan, A., Myers, K., Gaughan, K., Miki, T. & Aaronson, S. A. (1994) Cancer Res. 54, 1649-1652] and that expression of MRP is associated with enhanced cellular efflux of lipophilic cytotoxic agents [Breuninger, L. M., Paul, S., Gaughan, K., Miki, T., Chan, A., Aaronson, S. A. & Kruh, G. D. (1995) Cancer Res. 55, 5342-5347]. To examine the biochemical mechanism by which MRP confers multidrug resistance, drug uptake experiments were performed using inside-out membrane vesicles prepared from NIH 3T3 cells transfected with an MRP expression vector. ATP-dependent transport was observed for several lipophilic cytotoxic agents including daunorubicin, etoposide, and vincristine, as well as for the glutathione conjugate leukotriene C4 (LTC4). However, only marginally increased uptake was observed for vinblastine and Taxol. Drug uptake was osmotically sensitive and saturable with regard to substrate concentration, with Km values of 6.3 microM, 4.4 microM, 4.2 microM, 35 nM, and 38 microM, for daunorubicin, etoposide, vincristine, LTC4, and ATP, respectively. The broad substrate specificity of MRP was confirmed by the observation that daunorubicin transport was competitively inhibited by reduced and oxidized glutathione, the glutathione conjugates S-(p-azidophenacyl)-glutathione (APA-SG) and S-(2,4-dinitrophenyl)glutathione (DNP-SG), arsenate, and the LTD4 antagonist MK571. This study establishes that MRP pumps unaltered lipophilic cytotoxic drugs, and suggests that this activity is an important mechanism by which the transporter confers multidrug resistance. The present study also indicates that the substrate specificity of MRP is overlapping but distinct from that of P-glycoprotein, and includes both the neutral or mildly cationic natural product cytotoxic drugs and the anionic products of glutathione conjugation. The widespread expression of MRP in tissues, combined with its ability to transport both lipophilic xenobiotics and the products of phase II detoxification, indicates that the transporter represents a widespread and remarkably versatile cellular defense mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-regulated, cAMP-activated chloride channel located in the apical membrane of many epithelial secretory cells. Here we report cloning of a cAMP-activated epithelial basolateral chloride conductance regulator (EBCR) that appears to be a basolateral CFTR counterpart. This novel chloride channel or regulator shows 49% identity with multidrug resistance-associated protein (MRP) and 29% identity with CFTR. On expression in Xenopus oocytes, EBCR confers a cAMP-activated chloride conductance that is inhibited by the chloride channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamine)benzoic acid, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Northern blot analysis reveals high expression in small intestine, kidney, and liver. In kidney, immunohistochemistry shows a conspicuous basolateral localization mainly in the thick ascending limb of Henle's loop, distal convoluted tubules and to a lesser extent connecting tubules. These data suggest that in the kidney EBCR is involved in hormone-regulated chloride reabsorption.